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Now, we assume that all random Variables are discrete

For the joint pdf p of r.v.’s X, Y, denote p(z) = [ p(z,y)dy, p(y) = [ p(z,y)dx and so on.
Denote ran(X) be a range of a r.v. X. '
Denote X/ = (X;,...,Xj), its realization is z] = (2, ..., z;)

1 Entropy, Relative Entropy, Mutual Information

1.1 Entropy

Definition) Entropy.
X :r.v. with the pdf p(z)

H(X) = Ex (log }ﬁ)

For X =iwp. pj,e=1,...,n,

H({p1,...,pn}) == H(X)

1 wop.p
0 wp.1—p

Especially, for X = {
Proposition) Properties of Entropy.
(i) Shift invariant: H(X) = H(X + a) for a € R.

U([n]) where [n] ={1,...,n}, then H(X) = log(n).

)
(ii) Non-negativity: H(X) > 0.
(iii) X

)

H(X) <log|ran(X)| = H(U) where |ran(X)| is the number of elements in the range
of X, U~ U(ran(X)).

(iv

(v) H({pi}) is concave w.r.t. {p;}.

Proof. Consider D({p;}||U) = log |ran(X)| — H({pi}) O

Definition) Joint entropy.
X,Y :r.v.’s with the joint pdf p(z,y)

H(X, Y) = Exyy(log

p(X, Y))
Proposition) Properties of Joint Entropy.

(i) If X,Y are independent, H(X,Y) = H(X)+ H(Y)
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1.2 Conditional entropy

Definition) Conditional entropy.
X,Y : r.v.’s with the joint pdf p(z,y)

H(Y|X) = EX,Yaogm>

Proposition) Properties of Conditional Entropy.
(i) Non-negativity: H(Y|X) >0
(ii) Chain rule: H(X,Y)=H(X|Y)+ H(Y)
(iii) Chain rule’: H(Xy,...,X,) =Y 1 H(X;|X{™")

(v

(vi) For stationary process {X,}, i.e. p(X7) = p(X/1), H(X,|X{™") is nonnegative and
decreasing, thus it must have limit.

)
)
)
(iv) H(X,Y|Z) = H(X|Y, Z) + H(Y|Z)
) H(X|Y) < H(X). The equality holds when X,Y are indep.
)

Proof. H(X,| X" > H(X,| X3! = H(X,_1|X]?) >0, O

(vii) For g : ran(X) - R, H(g9(X)) < H(X)

Proof. H(X,g(X)) = H(g(X)) + H(X[g(X)) = H(g(X)), H(X,g(X)) = H(X) +
H(g(X)[X) = H(X) O
(viii) H(Y|X) =0iff Y is a ftn of X

(ix) A sequence of r.v.’s {X;} forms a Markov chain, then, H(Xy|X,) and H(X,|X,) are
non-decreasing with n.

Proof. 1(Xy; Xn—1) > I(Xo; X,). Refer proposition (ii) of 1.2. O

Theorem) Fano’s inequality.
Consider r.v.’s X, Y with the joint pdf. Let P, = P(X(Y) # X). Then,

P> H(X|Y)-1
~ log |ran(X)]



1.3 Relative entropy
Definition) Relative Entropy (Kullback Leibler distance).
For pdfs p(z), q(x),

p(X))

D(pllq) = Ex~p(log /0

Proposition) Properties of Relative Entropy.

(i) D(p|lg) > 0. The equality holds when p = g w.p. 1.
Proof. Use Jensen inequality. O]

(ii) D(pl|q) is convex in the pair of (p,q), i.e.
For A € [0, 1], pairs of pdfs (p,q), (¢',¢),

D(Ap+ (1= Np'IAg+ (1 = N)¢') < AD(pllg) + (1 = \)D('ll¢) (1)
Proof.
AD(pllg) + (1 = N D(||¢) = Z(Ap(m) log(]q)(—g) + (1= N)p'(z) 10%(5:22))
B Ap(z) / (1= N)p'(z)
- ZI:()\p(Q:) log()\q@)) + (1= A)p'(2) 10g(m))

Note that > " a;log($) > (37 i) log(gﬁﬁ) ("t — tlogt is convex). Apply this for

3
each term of the above summation. O

Definition) Conditional Relative Entropy.
For pdfs p(x]y), ¢(z(y),

D(p(ely)la(aly)) = Exyop(log %—}’Q)

Proposition) Properties of Conditional Relative Entropy.

(i) D(p(z,y)llq(x,y)) = D(pW)llq(y)) + D(p(zly)llq(x|y))



1.4 Mutual Information

Definition) Mutual Information.

X,Y :rv.’s. with the joint pdf p(z,y).

p(X,Y)

(7))

I(X;Y) = D(p(x, y)llpx ()py(y)) = Ex,y~p(log(
= H(X)—- H(X]|Y)
Proposition) Properties of Mutual Information.
(i) I(X;Y) >0.
(ii)) I(X;Y)=0iff X,Y are indep.
(i) I(X;Y) is concave w.r.t. p(x) for fixed p(y|x).
Proof.
I(X;Y)=H(Y)—- H(Y|X)

First, H(Y) is concave w.r.t. p(z) for fixed p(y|r). Indeed, H(Y) is concave w.r.t.

p(y) = {py1,---,Pyn} and p(y) is linear w.r.t. p(z) = {pui,...,Pum} since p,; =
> . p(Y = y|z)p(z). Second, H(Y|X) is convex w.r.t. p(x) for fixed p(y|z). In-

deed, H(Y[X) =3, , —p(x,y)log(p(ylx)) = -, p(x) (X2, —p(ylz) log(p(ylx))) is lin-
ear w.r.t. p(z). O

(iv) I(X;Y) is convex w.r.t. py|x(y|z) for fixed px(x). i.e.,
Given A € (07 1)7 pY\X;O(y|‘r)’ pY\X;l(y|x)a
I(X,Y)pr’y;/\ (X; Y) < /\](X,Y)NPX,Y;O (Xv Y) + (1 - /\)I(X7Y)NPX,Y;1(X7 Y) (2)

where py|x(y|T) = Apyxo(ylz) + (1 = N)pyxa(y|z).

P?"OOf. Note that pX,Y;)\(xu y) = DPx (x)pYLX,)\(y'x) Thena

pX,Y;)\(Xa Y)
Pxn(X)pya(Y)
= D(pxyu(z,y)lpxa(@)pya(y))

](X,Y)pr,y;,\ (X; Y) - ]E(X,Y)NPX,Y;/\ log

Now, we need to compute px y.a(z,y) and px.(x)py.a(y).

pX,Y;A(% y) = PX;A(x)pY|X;,\(y|I)
= px(@)pyxa(ylz)
= px (z)(Apy|x0(ylT) + (1 = Npyixa(y[x))
= Apxyo(z,y) + (1 = Mpxya(z,y)



Also,

/pXY/\ z,y dy/px,y;x(%y)cw

/PX ,\(96’ Py |x;x y\fﬂ)dﬁ//pX;A(IE)pY|X;,\(?J‘9U)d33
Px /pYXA y|x) dy/px;x(fc)pwx;x(ymdx

= px(x /p /\pY|Xo(y|$) (1 )\)pY|X;1(y|$))d$

= px () (Apy0(y) + (1 = N)pya(y))
= Apx(2)pyo(y) + (1 = Npx(2)pya(y)

pX/\ pYA

Therefore,

I(X:Y)NPX,Y;)\ (X; Y) = D(pX,Y;A(‘T> y) pr;,\(x)py;,\(y))
= D(Apxyo(z, y) + (1 = Npxya (@, 9) | Apx (@)pyo(y) + (1 = Npx (@)pya(y))
< AD(px,yo(z, y)lIpx (@)py0(y) + (1 = A)D(pxya(z,y)llpx (@)pya(y)) - (1)
< )\I(Xy) X, Y) + (1 — )\>I(X7Y)NPX,Y;1(X’ Y)

NPX,Y;O(

Definition) Conditional Mutual Information.

X,Y,Z : r.v.’s. with the joint pdf p(z,y, 2).

. _ op( P Y|Z)
I(X;Y|Z) = Exyzp( g(p(X\Z)p(Y\Z)))
= H(X|Z) - H(X|Y, Z)

Proposition) Properties of Conditional Mutual Information.

(i) I(X;Y]|2) =0

Proof.

HX3Y12) = Bxpllop R )

X, Y\Z
= EZNP[EX,YNP)(,YZ(log(p(‘l))((lz)p(|y|>z> ))] >0

(ii) Chain rule: I(X7Y) =Y"" I(X;Y|X{)

Theorem) Data processing Inequality.



Rv.’s X - Y — Z form a Markov chain. i.e. p(z|z,y) = p(z|y), then,
I(X;Y) > I(X; Z)

This means, no clever manipulation of the data can improve the inferences that can be made
from the data.

Proof. I(X;Y)—1(X;2)=1(X;Y|Z) >0 O
Corollary) In particular,.

(i) If Z =g(Y), we have I(X;Y) > I(X;g(Y))

(i) If X Y — Z, then I(X;Y]2) < I(X;Y)
Exercise) Some examples of Conditional Mutual Information.

a) I(X;Y|Z2) < I(X;Y)it X ~Ber(1/2), X =Y =27

i.0.d.

b) I(X;Y|Z) > I(X:Y)if X,Y "% Ber(1/2), Z=X +Y



2 Asymptotic Equipartition Property (AEP)

2.1 AEP

Theorem) (AEP).
X; - iid. r.v.’s with pdf p

—% logp(Xy,...,X,) — H(X) as.
Definition) Typical set.
The typical set A™ is
AW — (g ) s | — %logp(xl...,xn) _H(X)| < &)
Proposition) Properties of Typical sets.
(i) For 2z} € AE”), 2 nUHX)Fe) < p(gn) < 27MHX)=e),
(ii) P(X € A™) > 1 — ¢ for sufficiently large n.

(iii) |A£n)| < on(H(X)+e)

Proof. 1 = 32 . p(al) = 30 .o D(TT) = 30 g gt 2-n(HX)+e) = | A |2-n(H(X)+e)
xPEAe TP EA.
]

(iv) |A™| > (1 = €)27H)=9) for sufficiently large n

Proof. 1—e < P(X? € A™) = leLGAEn) p(zh) < |A§”)12*n<H<X>*€> for sufficiently large
n [

Theorem) Implication of AEP to data compression.

X; : ii.d. r.v.’s with pdf p. There exists a data compression code (bijection) s.t. for e > 0
1
E(EZ(X{L)) < H(X)+e
where [(XT') = > . (length of the code for X;)= > I(X;), X" = (X1,..., Xy)

Proof. For X7 € A encode it by nH(X1)+ €+ 2 bits. Otherwise, by nlog(|ran(Xy)|)+ 2
bits. It means, encode naively. (the number of possible outcome= |ran(X;)|")

E(U(XT) = > pl)i@h)+ Y plaf)ia])
apeAl™ apgAl™)
=P(X] € Ag"))(nH(Xﬂ +e+2)+P(XT ¢ AE"))(nlog(|ran(X1)|) +2)
< (nH(X1) + €+ 2) + e(nlog(|ran(Xy)|) + 2)



3 Entropy Rates

3.1 Entropy rates

Definition) Entropy rates.
The entropy rate of a r.p. X = {X;} is

1 1
H(X) =lim —H(X?) = lim ~H(X,,..., X,)
n n n n

provided the limit exists.
Alternatively (in case of X is stationary),

H'(X) =lim H(X,|X])
provided the limit exists.

Theorem) Two definitions coincide in case of stationary distribution.
If X is stationary, then H(X) = H'(X), i.e.

1
lim — H (X7) = lim H(X,| X"
n n n

Proof. LH(X7) =15  H(X;|X}) = lim, H(X,|X]") by Cesaro sum. O

T n

3.2 Markov Process

Definition) Markov Process.

Arp. X ={X;}is a Markov process (m.p.) if
P(X, =z, | X7 =27 = P(X,, = 2| X1 = T1)

for all n.
A m.p. X = {X;} is stationary (s.m.p.) if P(X,, = z,|X,,-1 = z,_1) is indep of n. —
H(X) = H(X3|X1).
Transition matrix M for a m.p. X = {X;} with ran(X) =[m|={1,...,m} is
M = [pijli<ij<m  where p;; =P(X, = j|X,—1 =)
Denote M" = [pgl)]
A m.p. X = {X;} is irreducible if there exists m € N s.t. Vi, j € [m], In € {0} U [m] with

pgz) > 0.
A m.p. X = {X;} is aperiodic if for given N € N, Vi, j € [m], 3n > N with p
— (Aperiodic C Irreducible)

(n)

i > 0.

A stationary distribution p for a m.p. X = {X,} satisfies up = uM

10



Theorem) Entropy rate of s.m.p..

If X is s.m.p., then.

H(X) =— Z 1iPij 10g pij

ij

Proof. Since it is stationary and Markov, H(X) = lim, H(X,|X7 ') = lim,, H(X,|X,_1).
SO? hmn H(Xn|Xn—1) = H(X2|X1 = P«) = EX1~M(EX2|X1N;D($2\$1)(m)) where H IS a
stationary distribution. O

Exercise) A few examples.

: . . 1—
a) For a m.p. with transition matrix M = < @ ),

g 1-p
A stationary dist. is u = (aLj-,B7 %)
H(X) = F5H(0) + 355 H(B) < H(w) = H(z55)

3.3 Hidden Markov Models

Definition) Markov Process.

A r.p. Y ={Y;} is a Hidden Markov process (h.m.p.) if ¥; = ¢(X;) for some ¢ : R — R and
am.p. {X;}

YV is stationary but not necessarily a m.p..

Lemma) Initial conditioning reduces entropy.

Y ={Y;} is a h.m.p. associated with a m.p. {X;}. Then,
H(Y,|Y["™, X1) < H(Y)

Proof.

H(Y, Y71 X)) = HY, Y X))

H(Y,|Y 1 X1, X%,) (.- Markov property)

HY, Y 1Y% X1, X%,) (-Y={Y}isahmp.)
H(

ValV5 ) = BV [Y7) = H(Y) as k- o0

IN

Lemma) Initial conditioning approaches to the entropy rates.
Y ={Y;} is a h.m.p. associated with a m.p.. {X;}. H(X;) < co. Then,

HY, Y™ -~ HY,|Y" ', X)) =0 asn— o

11



Proof.
H(Y, YY) = HY, Y X0) = I(X05 Yo V)

Since H(X;) > I(Xy;YP) = S0 (X Yi|YY ™), it follows that I(X1;Y, [V ') — 0 as
n — 0o [

Theorem) Initial conditioning approaches to the entropy rates.

Y ={Y;} is a h.m.p. associated with a m.p.. {X;}. H(X;) < co. Then,

H(Y V! Xh) < HQY) < H(Y,[Y!™)
lim H(Y, Y7 ', X1) = H(Y) = lim H(Y, YY)

12



4 Data Compression

4.1 Data Compression

Denote D be a set of alphabets. Its size is D = |D|
Denote D* be the set of finite length strings of D.

Definition) Codeword.
For a r.v. X, The source code is C' : ran(X) — D*.
The expected length L(C) of a source code C'is given by

L(C) =E((X)) = ) plx)l(x)

where [(z) is the length of C'(x)
A source code is nonsingular if it is injective.

The extension of a source code C : ran(X) — D* is C* : ran(X)* — D* defined by
concatenating codewords, i.e.

C*(z}) = C(z1)...C(xy)
for every n > 0 and «} € ran(X)"

A source code C': ran(X) — D* is uniquely decodable (UD) if its extension C* is nonsingu-
lar.

A source code is a prefix code if no codeword is a prefix of any other codeword.

Theorem) Kraft Inequality.
If C is a prefix code, then

ZD‘“ <1

(This sum is called Kraft sum)
Conversely, given {[;} satisfying the above inequality, there exists a prefix code with these
word lengths.

Proof. (=) Consider a D-ary full tree T with the depth lmax = max; ;. Given codewords
{C(z;)}, we can find the corresponding subset nodes {v;} C T satisfying that none of nodes
on the path from the root to v; is v; node. Therefore, v; have D'max—t descendents in T,
each of those descendents is disjoint. So, Y, D'max~ < Dimax,

(<) Grow a D-ary full tree 7" with the depth l},;,, = min; ;. O
Theorem) The expected length of a prefix code.

If C is a prefix code associated with a r.v. X on D, then

L(C) > Hp(X Zp logD%

Proof. Consider a prob. dist. {¢;} over ran(X) where ¢; = N =57 Then, KLp({p:}|{a}) =

—Hp({p:}) + L(C) + logp(K) > 0 with log-base D where K = >, D~%. The conclusion
follows by Kraft Inequality. Furthermore, the equality holds when K = 1, p; = ¢; = D%, [

b 'B
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4.2 Shannon Coding

Definition) D-adic. A pmf is D-adic if each of the probabilities is equal to D~" for some

neN

Definition) Shannon Coding.

For a r.v. X, Shannon coding C' : ran(X) — D* is a code satisfying [; = [log, pl}

Proposition) Properties of Shannon Coding.
(i) Sub-optimal
(ii) prefix code (" it satisfies Kraft inequality)

(iii) Hp(X) < L(C) < Hp(X) +1 (. logp o < 1; < 1+ logp )

Theorem) Optimal prefix codeword length.

If C* is an optimal prefix code associated with a r.v. X on D, then

Proof. C* should be better than Shannon code. Also, C* is a prefix code.

Theorem) The minimum average code length.

If C* is an optimal prefix code associated with a r.v.’s {X;} on D, then
—Hp(XY) < Lp(C7) = B(=1(XT)) < —Hp(X{) + ~
n n n
If ¥ ={X,} is stationary,
1
Ln(C7) = E(_1(X7)) = Hp(X)

Theorem) The comparison of average code length.

If C'is a prefix code associated with ar.v.” X ~pon D s.t. lo(z) = [log
q, then

Hp(p) + KL(p|lq) < Ex~p(lc(X)) < Hp(p) + KL(pllq) + 1

Proof.

1
Exp(lo(X Zp log 1< Zp (log W +1)

1 for some pmf

—Zp (o - P00 1) = Holp) + KLGol0) + 1

Similarly, the lower bound can be proven.

14



4.3 Huffman Coding
Definition) Huffman Coding.
For a r.v. X, Huffman coding C : ran(X) — D* is a code satisfying ...
Lemma) Characterization of Huffman Coding.
For a r.v. X, there exists an optimal prefix code that satisfies
1. If p; > pj, then [; < ;.
2. The two longest codewords have the same length.

3. The two longest codewords differ only in the last bit (, and corresponds to the two
least likely symbols).

Proof. Consider a corresponding tree. We can improve E(/(X)) by swapping, rearranging
and trimming. O]

Proposition) Properties of Huffman Coding.

(i) Optimal
Proof. By recursion through merging the two longest codewords. O]
(i) Hp(X) < L(C) < Hp(X) +1

4.4 Shannon-Fano-Elias Coding (Alphabetic code)

Definition) Shannon-Fano-Elias coding.

For ar.v. X with pmf p, Shannon-Fano-Elias (S.F.E) coding C' : ran(X) — D* is constructed
by following steps.

1. Define F: ran(X) — [0,1] : z — >, _, p(a) + 3p(x)

2. Let I(z) be the integer {bg2 ——‘ +1

1
p(z)

3. Let C(x) be the first I(x) most significant bits after the decimal point of the binary

expansion of F(z) i.e. |F ()]
Proposition) Properties of S.F.E Coding.

(i) Nonsingular

Proof. Tt is enough to show that | F(a;)]y,) are distinct where {a;} = ran(X). Note
that F(a;) > F(a;) > [F(ai)]ia,)- Claim that [F(a;)]i@a;) > F(ai-1). Obviously,
LF(ai)]i@) = Flai) = gray- Also, F(a;) = F(ai1) + 5p(ai) > F(ai—1) + gy since

ol(a;

I(a) = {1og2 ﬁ] + 1. Therefore, F(a;) > | F(a;) |y > Flai1) O

15



(ii) S.F.E coding is prefix free
(i) L(C) < H(X) +2

Proof. L(C) = E((C(X)) = 32, p(a)l(x) = 32, p(2)([logy ;i1 +1) < H(X) +2 O

16



4.5 Channel Capacity

5 Channel Capacity

Definition) Channel Capacity.

A discrete channel is a system (X, p(Y|X),Y') consisting of an input r.v. X and output r.v.
Y, and fixed p(Y|X)

Information of channel capacity is

C =max[(X;Y)
p(X)

Proposition) Properties of Channel Capacity.
i) C >0
(ii) C <log(Jran(X)|), C <log(|ran(Y)|)

(iii) C is concave w.r.t. p(X)

Definition) Symmetric Channel.

A channel is symmetric if the rows and the columns of the transition matrix p(Y|X) are
permutations with each other

Proposition) Properties of Symmetric Channel.

(i) C = maxyx)[(X;Y) = max,x)(H(Y) — H(r)) < log|ran(Y)| — H(r) where r is a

row of the transition matrix.

Definition) Discrete Memoryless channel.

A channel is memoryless if the prob. dist. of the output depends only on the input at the
time.

The n-th extension of the discrete memoryless channel (DMC) is (X7, p(Y{"|x]), Y]") where
p(Yelot, i) = p(Yila¥)

Definition) Jointly typical sequences.

The set A™ of jointly typical sequences {(z},y)} is defined as

1 1
AM = {(z? ™) | max(| — - logp(z}) — H(X)],| — o logp(yy') — H(Y)|

1
1= = logplat. ) — HX,Y)) < e}
where p(z7,y7) = [[iZy p(zi, i)
Theorem) Joint AEP.

17



Let (X7, YY") be i.i.d. sequences from p(z7,y}) = [[;; (i, y;). Then,
1L P(XP, Y7 € A™) 5 Tasn — oo
9. |AE")| < QnH(X.Y)+e)
3. If (X7, Y7") ~ plat)p(yi),
BT, ) € A®) < 2700050
For sufficiently large n,
P(CYE, 7)€ AD) > (1 = g2-niienssn

Proof. 1 and 2 are obvious. For 3, P((X7, V) € A™) = Z(f?,ﬂ?)eAE”’ p(Z,g7) =
Z(W eA™ p(z7)p(y}). By 2, we can bound the number of terms in the summation. By
1,91 €

definition of AE”), we can bound the each probability term. n

Definition) (M,n).

An (M, n) code consists of
1. Anindex set I ={1,..., M}.

2. An encoding ftn 27 : I — Q7. This is determined by realizations of r.v. X (w) n times
for each w € I. So, Xj(w),..., X,(w) are i.i.d. r.v.’s. Denote their realization as
z1(w), ..., zy(w). We will determine which realizations define z7(w) in later.

3. A DMC (2} (w), p(Y{*|2}(w)), Y7"). This generates a r.v. Y{* for given z7(w).

4. A decoding ftn g : Q2 — I.
Since every yJ is always generated for given z7(w), a decoding ftn ¢g can acknowledge
2} (w). But we omit for the sake of brevity. i.e. g is a ftn of 27 (w), as well as yJ.

The probability of error at input code z7(w) is

Ao (@ (W) = Eyrpor) (T(g(y]) # w)) = P(g(Y]") # wlat(w))
= plu} a5 () I (g(y}) # w)

The maximal probability of error at input code 7 is
A (27) = max Ay (] (w))
The average probability of error at input code z7 is

n n n 1 n
Pe( )(%) = Ew~uqermy w (27 (W)) = M Z Aw (2t (w))

18



The average probability of error is
P = By yqnrnBxpn Aw (X7 (W)

The rate R of an (M, n) code is
log M

n

R:

A rate R is achievable if there exists sequence of ([2"%],n) code s.t. A — 0 as n — oo

The capacity of a discrete memoryless channel is the supremum of all achievable rates.

Theorem) Channel Coding Theorem.

For every § > 0, R < C, there exist (2"% n) code with P™ < 5. Conversely, any sequence
of (2" n) code with P{™ — 0 must have R < C

i.e. (2" n) code is achievable iff R < C.

Proof. First, consider i.i.d. r.v.’s Xj(w), ..., X,(w) for each w € [2"] = {1,...,2"%} where
p(X7(w)) maximizes I(X;Y). The number of observation n will be determined later. From
the observation, we have a codebook

B@) B aen ] e

Define £, = {(27(w),y) € Am } for each w € [2"%]

)

Fix € > 0 s.t. 4e<5andR<[( Y)—3e (- R<C).
)

Define a decoding ftn g : ran(Y")"

— I by followings.

wif A w' € 277 st (2 (w'), yt) € By

2  o.w.

9Wr) = gar (Y1) = {

Note that the second case is no matter what value you assign.
Therefore, the expected number of error (or probability of error) is

P = By qnm) Exp ) Byppptixp w) (Lot w)
= Ew~v(m) ExponP(g(Y1") # WIXT(W))
= Ey~u(enrpExr o Aw (XT(W)))

WZEX () (X7 (w)))

= ExprM(X7(1)) (.- symmetry of code construction)
= 2 Py (1)

= ) P@i(1) - P(g(¥7") # 1]a7(1))

19



By the definition of g,
P =% P(}(1)) - P(g(Y") # a1 (1)
i (1)
= ) Pi(1)) - P(=(3 1 € 2" s.t. (27(1),47) € En)lat (1))
i (1)

D P@i(1) P27 (1),47) ¢ BV (27(1),97) € Ea V-V (27(1),47) € Eynrlaf (1))

8
=3
—

—
—

(XT(1),Y") & BV (XT(1),Y]") € Ep V- -+ V(X](1),Y]") € Egnr)
xr)yr (BY) + Pxny,yn (B2) + -+ Pxngyyp (Eonr)
W,yp (E2) + -+ Pxnayyn (Eonr)  for sufficiently large n

I
A,

(@)
+

s
>

3

1
+ 2—n(I(X;Y)—36—R) ( Pxp() i DY (X7 (w) Y 7& 1’ AEP 3)
¢ for sufficiently large n since R < I(X;Y) — 3¢

)

IA N IA A

N ™

Conversely, we need to show that P™ 0 implies R < C. First, we show Fano’s inequality.

Lemma) Fano’s inequality.
For a DMC, assume W ~ U([2"F]). Let P = Ew v q2nmy Expwn Aw (XT(W)). Then,
H(XP|Y!") <1+ PM"nR (3)
or,
HWIY?") < H{PM, 1= P}) + P log(|2" — 1) (4)
(Note that H(X]'|Y)") needs integration w.r.t. W, X7(W), Y"))

Proof. Let’s start from data processing inequality H (X7 |Y]") < H(W|Y{") since W — X —
Y. Define Ewy» = I(g(Y") # W) be a ftn of W and Y;*. Note that when we integrate
Ewyr, we sequentially generate W ~ U(2"%), X7(W) and Y{" ~ p(-| XT'(W)).
Consider
H(Ewyy, WIY") = HWNT) + H(Ewy W, Y)") = HWI[Y") +0
Hence, H(XT(W)YT") < HWNYY") = H(Ewyp, WIYT") = H(Ewyp [Y")+H(W|Ewyp, YT").
For the first term,
H(Ewyn|Y)") < H(Ewyr) <1 (. Eisa binary r.v..)
For the second term,
H(Wleyyln, }/1”) — EWNU([2"R])(P(EW/,Y1" — O)H(W’}/ln, EW7y1n — O)
+P(Ewyy = DHWIY, Ewyp = 1))
(P, H integrate w.r.t. X7",Y/")
< 0+ By qenmyExpon (P(g(Y") # WIXT (W) log(fran(W)[ — 1)
(. Ewyn = 0 < W is correctly determined by g(Y)"))
< Ew~u(nm)Expon Ow (X (W))) log(jran(W)| = 1) < BM nR
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Henceforth, H(X?(W)|Y{") < 1+ P (a7)nR which is (3).
For (4)), note that

H(Ewy;) = H{P(Ewyy = 1), P(Ewyy = 0)}) = H{P(g(Y]") # W), P(g(Y]") = W)})
= H(P",1 - P")

O
Furthermore, we need following lemma too.
Lemma) For a DMC,.
[(X75Y7) < nC (5)
Proof.
X7V = HY)") — H(Y\"|XT)
= H(Y!") = ) HYiPy™ ' X7)
i=1
=H(Y{") = > H(Yi|X;) (. DMC)
i=1
<D HY) =Y HYIX) =) 1(X;Y))
i=1 i=1 i=1
O
Now, we can prove the converse.
nR = H(W) = HOW|Y!) + I(W: Y}
< HWYY) + I(X7(W); Y1)
<1+ POnRHI(X1YY) (o (@), W~ U(2)
<1+ POnR+nC (. ()
Dividing by n, we have R < % + PR+ . Taking n — oo, we are done. [

Corollary) Bounding A\ (z7) by specific realization.

(i) For every § > 0, R < C, there exist (2"%,n) code with A" (27) < 6.

Proof. 1t is enough to show that we can take a codebook (2”(R_1/”),n) satisfying
A" (27) < 6. By channel coding theorem, we have

e

Then, there exists 27 (w) for each w € [2"7] s.t. By qanrp i (2 (W)) < 26. Therefore,
at least the half of w’s of [2"7] satisfies \,, (2] (w)) < 4e. So we are done. O
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Theorem) Zero-error codes.
P™ = 0 implies R < C.
Proof. nR = H(W) = H(W|YP) + I(W:Y{) = I(W;Y{") since P'” = 0 implies W
can be restored by g(y7'(X7(W))) for all X7(W). Data processing inequality implies that
I(W;Y) < I(XT;YP). Finally, I(XT; YY) = 350, I(Xi: Y:) < nC. O
Definition) Feedback capacity.
(2" n) feedback code is a sequence of mappings z;(W, Y™ 1).
The capacity with feedback, Crpg, of a DMC is a supremum of all rates achievable by feedback
codes.
Theorem) Cpp = C =maxx [(X;Y).
Proof. Clearly, Cpp > C. To show that Crp < C, let’s start from H(W) = H(W|Y") +
I(W;Y"). Bound I(W;Y]") as follows.

IWiY") = H(Y") — H(Y;"[W)

=H(Y") =) HY[Yi™', W)
=1

=H(Y") =Y HY[Y{™' X, W) (.- X;isaftnof Y{~', W)

=1

= H(Y}") — ZH(YZ-!X»

<Y HY) =Y HYIX) =D I(X; V)
=1 =1 =1
<nC

Together with , HW) < 1+ P™nR+nC. Dividing by n and letting n — oo give R < C.
Taking supremum of R, we have Cpg < C. O]
Theorem) Joint source-channel coding theorem.

V" is a finite alphabet stochastic process V s.t. V" € A [0 (V) < C. Then there exists
source-channel code s.t. P(V* # V") — 0 a.s.. Conversely, for any stationary stochastic
process V with H(V) > C, the probability of error is bounded away from zero.

Proof. Take € > 0 s.t. H(V)+ e < C. From AEP, we have |A£n)] < 2MHW)+) Qo we can
index them with n(H (V) + €) bits. From channel coding theorem, we can reliably transmit
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the indices since H(V)+e=R < C with the arbitrary small probability of error.
Conversely, we need to show that P(V{* # V") — 0 a.s. implies H(V) < C. Note that

=)

n

(HVPIVE) + LV V)

HV) =

< —(1+ PV # Vi)nlog |V| + IV V)

< —(1+P(VP # V)nlog V] + I(XT5 VM)

+ PV £ V) log [V| + C

SIm3[IR3|—3

letting n — oo, we are done.
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6 Differential Entropy
Now we are assume that all r.v.’s are continuous, i.e. F(z) = P(X < z) is continuous.

6.1 Differential Entropy, Relative Entropy, Conditional Entropy,
Mutual Information

Definition) Differential Entropy.
X :r.v. with the pdf p(z)

1
h(X) = —/Sp(x) Inp(z)dzr = Ex(In M,S)

where S = {z | p(xz) > 0} is the support set of X.
Comparing to discrete entropy (bits), differential entropy uses natural log (nats), i.e. In.

Exercise) Few examples.

a) X ~U([a,b]) = h(X)=In(b—a).
Note that if b —a < 1, h(X) <0

b) X ~N(0,0%) = hX)=Ex(3n2710% + 55X?)) = ; In2nec”.

Proposition) Properties of Differential Entropy.
(i) Shift invariant: A(X) = h(X + a) for a € R.
(i) h(aX) = h(X) + log|al
Proof. pax(y) = pa(¥) O

(iii) A(AX) = h(X) +log|A| where A is a linear map and |A| = detA

6.2 AEP for continuous r.v.

Theorem) (AEP).
X; riid. r.v.’s with pdf p

_% I p(X,...,Xn) = h(X) = Ex(~lnp(X)) as.

Definition) Typical set.
The typical set A™ is

Agn) = {(ﬂfl,ﬁn) - S"o |_Elnp(xl7$n)_h(X)| <€}
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Define a Vol(A) as

Vol(A) = / dxy - -dxy,
A
Proposition) Properties of Typical sets.

(i) P(X € AE_”)) > 1 — e for sufficiently large n.

(i) Vol(AM) < an(HX)+9)

Proof.

1:/ p(x’f)dx?z/ p(x?)daﬁz/ 9 n(H(X)+) gon
" AE") AE”)
=V ol(AM)2-nH(X)+e)

(iii) Vol (AE")) > (1 — €)2"HX)=9) for sufficiently large n

Proof. 1 —e < P(XT € A"y = Sy p(a)dat < Vol(AU)2-n(HEX)=9) for sufficiently
large n O]

Theorem) Relation to Discrete Entropy (Quantization).

Define X2 = Y, Ailpj<x<n(i+1)-
If p(z) is Riemann-integrable, then

H(X?) +1log A — h(X) as A — 0.
Proof. H(X?) = =Y. P(X? = Ai)logP(X® = Ai). MVT implies that there exists x; s.t.
P(X2 = Ai) = E(Jai<x<a@t+1)) = p(z;)A. Therefore,
==Y P(X* = Ai)log P(X* = Ai)
:_pri )A) log(p(x:)A) = = (p(x:)A) log p(a:) —log A Y plw:)A
= Z p(z;)A) logp(x;) —log A — h(X) — log A (bits)

Definition) Joint differential entropy.
X,Y :r.v.’s with the joint pdf p(z,y)

1

hMX,Y) =Exy(n XY

)
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Exercise) Multivariate normal distribution..
a) X ~N(u,X)
1 n 1 ty—1
A(X) = Ex (5 W(@m)"[S] + 5 (X — 0)'S (X = o)
1 1 -
= (20" + 5ir(Ex(SX — @) (X — )

1
=3 In(27)"|X| + n (nats)

Proposition) Properties of Joint Differential Entropy.
(i) If X,Y are independent, h(X,Y) = h(X) + h(Y)

Definition) Conditional Differential Entropy.

X,Y :r.v.’s with the joint pdf p(z,y)

1

H(YIX) = Exy (I —ores)

Proposition) Properties of Conditional Differential Entropy.
(i) Chain rule: h(Xy,...,X,) =Y h(X:|X{ ™)

(ii) Conditioning reduces entropy: h(Xi,...,X,) <>."  h(X;). The equality holds when
Xi,..., X, are indep.

Theorem) Hadamard Inequality.
K : p.s.d. matrix. Then,

K| < ﬁ Ki;
i=1

Proof. Let X ~ N (0, K). From the above 2nd proposition,

1 . 1 1 T
5 In(2me)"|K| < > 5 In(2me) Ky = - In[(2me) [JEG

=1

Definition) Differential Relative Entropy (Kullback Leibler distance).
For pdfs p(z), q(z),

p(X)

D(pllq) = Ex~p(In m)

Proposition) Properties of Differential Relative Entropy.
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(i) D(p|lqg) > 0. The equality holds when p = ¢ w.p. 1.

Theorem) Normal distribution maximizes entropy.

Let X € R" be ar.v. with E(X) =0, E(XX") = K. Then,
hX) < %ln(27re)"|K|

where equality holds when X ~ A(0, K)

Proof. Let Y ~ N(0, K). Then,

0 < D(X||Y)

—h(X) +Ex(—logN(X;0, K))
= —h(X)+

In(2me)"| K|

ol —

O
Definition) Differential Mutual Information.
X,Y :r.v.’s. with the joint pdf p(z,y).

1(X:Y) = D(p(e, ) Ipx (2)py () = Ex,mpaog(]%»
h(X) — H(X|Y)

Unlike differential entropy, the mutual information of continuous r.v. is the same as that of
quantized r.v..

Proposition) Properties of Mutual Information.

(i) I(X;Y) > 0.

(i) I(X;Y)=0iff X,Y are indep.
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7 Gaussian Channel

7.1 Gaussian Channel

Definition) Gaussian channel.
Y, =X, + Z;, Z R N (0, N) where Z;, X; are independent and %Z?:l r? <P
Proposition) Probability of error.

(i) Probability of error for binary transmission X = ++/P w.p.;.

P.=Ex(I(XY <0)) = %(IP’(Y <0 X =vVP)+P(Y > 0|X = —VP))
=P(Z > VP)

Definition) Information capacity.

The information capacity with power constraint is

C= max I(X;Y)

p(z):EX2<P
Proposition) Gaussian channel capacity.

(i) The information capacity of Gaussian Channel is

1 P
3 log(1 + N> where X ~ N(0, P)

Proof. I(X;Y) = h(Y) — h(Y|X) = h(Y) — h(Z]|X) = h(Y) — h(Z). Note that
E(Y?) = E(X?) + E(Z%) < P+ N. Therefore, h(Y) < $log2re(P + N). We are
done. 0

Definition) (M,n) with power constraint.
An (M, n) code with power constraint consists of
1. Anindexset I ={1,..., M}.
2. An encoding ftn 27 : I — Q7 with power constraint of Y #?(w) <nP Yw € I
3. A DMC (a7 (w), p(Y{*]z}(w)), Y]"). This generates a r.v. Y]" for given a7 (w).
4. A decoding ftn g : Q2 — 1.
Theorem) Gaussian capacity.

For every § > 0, R < C = $log(1+ %), there exist (2%, n) code with P™ < §. Conversely,
any sequence of (2"F n) code with P — 0 must have R < C' = tlog(1+ £)
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i.e. (2" n) code is achievable iff R < C'.

Proof. Fix e >0s.t. de <dand R< I(X;Y) =3¢ (" R< ().

Generate X;(w) ~ N (0,P —¢€) Yw € [2"F].

Define E,, = {(a}(w),y}) € A"} for each w € [2*7], F,, = {L 3" 2;(w) > P}.
Define a decoding ftn g : ran(Y)" — I by followings.

w o if 3w’ € 2] st (2P (W), y}) € By Az (w') € Fyy

2  o.w.

9(Wy) = gar (y1') = {

Note that the second case is no matter what value you assign.
Similar to channel coding theorem, the expected number of error (or probability of error) is

Pe(n) = EWNU([WLR])]EX{‘(W)EYl"Np( . |m?(W))(Ig(Y1")¢W> = /”(1) P(Q(Yin> 7& 1|x?(1))dP(m?(l))

By the definition of g,

PO = [ RGO £ U ())R(E )

<P(X7(1) € F) +P(X7(1) € EY) + P(X7(1) € Ep) + -+ + P(X](1) € Egur)
<edet (2 - 1)2 U3 (X (1) ~ N(0, P —€))

< 2¢ + 27 UXY)=3e=R) g sufficiently large n

< 3e for sufficiently large n since R < I(X;Y) — 3¢

)

Conversely, we need to show that P™ 0 implies R < C. Now, we can prove the converse.

R:leqz$HMWﬁ+HWﬂﬁ)

—_3

< —(HWPY) + I(X7 (W) Y7)

1 1
< POR+ I (o (), W~ U(27)

1 1 <
§—+P1§e)R+—§ h(Y;) — h(Z;) (. the last line ofproofof,Yi:Xi—i-Zi)
n n
1=1
<1+p@R+1ffkmzdp+N» Llog(2meN)] where P = E 2(w)
- - 5 mells -5 ™ w i — Bw~U(2nB]) Ly
=7 n ni:12 g 9 & U([2"5])
1 ~1, P+N
< = (e) _E il L
_n—i-Pn R+n< 2log N

1 1 1 P+ N
_ (e) _ _ v .. P .
<—+PY“R+ 5 log(n E ) (. Jensen’s inequality)
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Note that Y71, 2o = £ 370 Byoprqonmy @ (w) = Eypopranm)y 5 2oy 25 (w) < P

n

1 1 1P +N
L (e) 2 i
R<=+P R+210g( E ¥

)

n " n

i=1

IN

1 1 1 P,
— 4 p Zlog(1 + — -
n—l— nR—l—Qog( +Nzn)

=1

IN

1 1 P
— 4 p Zlog(1 + —
~+ B R—|—20g( —l—N)

Taking n — oo, we are done. [

7.2 Parallel gaussian channel

Definition) Parallel Gaussian channel.

Y, =X, + Z;, Z; ~N(0,N;) where Z;, X; are independent and Y, 27 < P
Proposition) Parallel gaussian channel capacity.

(i) The information capacity of parallel Gaussian Channel is

1
C= _max I(X{;¥]") = Sllog(+

S EX? 5 )]* where v satisfies Y (v — N;)* = P
EX?<P

Proof.
I(XT5Y") = h(YT") = R(Y)"[XT) = h(YY") — h(ZY7)
= () - Y h(z)
=Y () = h(Z)
1 1 )
< Z 3 log 2me(P; + N;) — 5 log 2me(N;) where P, = EX;

1 P;
= —log(1 + —+
> glos(l+ V)
So, we need to optimize followings
. 1 P
Maximize g §log(1 + E)
subject to E P,<P P >0

Consider J = Y~ +log(1 + £) — (3 P,). We have 22 = 57+v — 3 = 0. Hence,
P, = (v — N;)* > 0 must satisfy > P, = P.
To sum up, we first find v s.t. > (v — N;)* = P. Then,
1 v
— N7 2 oe( L+
€= Y sllos( )
0

30



7.3 Correlated gaussian noise channel

Definition) Correlated (colored) gaussian channel.
Y;=X;+ Z;, X0 ~N(0,Ky), Z8 ~ N(0,Kz) where Z | X and * =3 22 <P

=11

Proposition) Colored gaussian channel capacity.

(i) The information capacity of Colored Gaussian Channel is

C= max I[(X5Y]")= Z %[lOg()\i)]Jr

Lir(Kx)<P i
n

where \;’s are eigenvalues of K, v satisfies Z(l/ — )T =nP.
i=1

(ntn

o 1157’ xtx). So, power constraint is %tr(KX) < P.

=11

Proof. Note that = 37
(XT3 Y)") = h(Yf”) - (Y"|X") = h(YT") = h(Z7)
=h(Y]") =) h(Z

1 1
=3 log(2me)" (| Kx + Kz|) — §1Og(27fe)n|KZ|

-y Lo Hx + Kz
2 | Kz|

So, we need to optimize followings

. 1 |Kx + K|
Maximize —log ————
2.5 k)
1
subject to Kx >0, —tr(Kx) < P
n

Since Kz is p.s.d., we have Kz = QDzQ" where Dy = diag(eig(Kz))= diag(Ai, ..., \n)

|[Kx+Kz| _ 110g |Qt KXQ"FDZl‘ Let A = QtKXQ~ So,

and @ is orthogonal. Then 3 log Vel o

equivalently,

- 1. |A+ Dy|
Maximize —log —————
) 2 % Dy
1
subject to A >0, —tr(A) < P
n
Hadamard inequality implies that |A + Dz| <[], |Ai + A;| while equality holds when
A is diagonal. From the constraint, 1¢r(A) = 3, A; < P. So, it is reformulated as
independent parallel channel. Therefore, we first find v s.t. Y " (v — A\)T = nP.

Then,
_ 1 Y+
€= log(1)
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7.4 Stationary colored gaussian noise channel

Definition) Toeplitz matrix.

Toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal
from left to right is constant.

Exercise) A few examples.
a) X = {X,} is a stationary process, then Var(X7) is a Toeplitz matrix

Theorem) Toeplitz distribution theorem.

Given continuous g : R — R, Toeplitz matrix

R(0) R(1) R(2) -+ R(n-1)
R(1) R(0) R(1) -+ R(n-2)
K,=| R(@2) R(1) R(0) -+ R(n-3)
R(n—1) R(n—2) R(n—3) --- R(0)
with eigenvalues A, ..., A, let N(f) =3, R(n)e?? ™ (§ = 2rf) where v/—1 = j. Then,
1 - 1/2
lim =) g(\" :/ g(N(f))df
Jim 1 D200 = [ (1)
0J2mf-0
Proof. Briefly...Check that v = : satisfies K,,v = Av. Then, we have AE”) —
ci2mf-(n—1)

N(f) as n — oo. O

Corollary) Revisit colored Gaussian channel capacity.
(i) For stationary Z, the information capacity of Colored Gaussian Channel is
L (v = N()*
C = max ]X”;Y”:—/ log(1 + ——————)df
Sir(Kx)<P (X 2 Ji2 ( N(f) )
where \;’s are eigenvalues of K, N(f) = Z Kz (n)e??™m,

v satisfies Z(y -\)t=r
The power constraint becomes fll/;(y —N(f)tdf =P

Proof.

C= max I(XY")= Z l[log()\%)]* _ Z%log(l . (v —)\j\i)+)

Lir(Kx)<P 2

where \;’s are eigenvalues of K, v satisfies Z(u -\t ="

By the above theorem, 3 10g(1+(%+)+) =1 11/22 log(1+ %)df where N(f) =

>, Kz(n)e??™™ . The power constraint becomes fll/;(u — N(f))Tdf = P. O
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7.5 Correlated gaussian channel with feedback

Definition) Correlated gaussian channel with feedback.

Yi=X;+ Z;, X' ~N(0,Kx), Z} ~N(0,Kz) where 1 3 22(w,Y{") < P

(2% n) feedback code for the correlated gaussian channel is a sequence of mappings

£ (W, Y{ ™) where E(2 3 2(w, Vi) < P

Proposition) Correlated gaussian channel with feedback capacity.

(i) Feedback capacity of correlated gaussian channel per transmission (= 1) is

1 | Kx+z]|
Crpn=— max [(X;Y]")= max 1
P Lir(Kx)<P (X377 = Li(Kx)<P 2n |Kz|
Proof.
I(XT5YY") = h(Y ) h(Y'|XT) = h(YT") = h(ZT)
) - Yz
1 1 .
< 51 og(2me)" (| Kx-7]) — £ log(2me)" |
1 1 |KX+Z|
—lo
S 27 Ky
where power constraint is ¢r(Kx) < P. O
(ii) R with P = 0 satisfies
L. |Ky|
R< —I1 n
S0 B E, T

where ¢, — 0

Proof. By 1} we have H(W|Y") < 1+ nRP™ = ne, where ¢, = 14 RP™ = 0.
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(iii)

Then,

nR=H(W)
= I(W;Y7") + H(WI[YY")
< I(W5Y]") + ne,

= Z I(W; Y YY) + ne,

= Z (Vi)Y Y) = h(Y| Y W) + ney,

= Z YAy = h(YY{ L W, X)) + e, (o XY ftnoof YiTL W)
— Z (VYY) — h(Y X Y 20N W, X0)) + ne, (. similarly)
= Z (YY) = h(Z] X171 Y 278 W, X)) + ney,

= Z (VY™ = h(Zi|Z7Y) +ne, (- Z : stationary)

= h(Yl”) — h(Z}) + ney

= llog | Ky
2 7Ky

+ ne,
We are done. 0

The information capacity of correlated gaussian channel with feedback per transmission
(= £) can be bounded above as

1
C’FB,n S Cn + 5

where C), is a correlated gaussian channel capacity per transmission.

Proof. We need a following lemma.

Lemma) Determinant preserves order on p.s.d. cone.
For A>0, B>0, A— B >0, we have

Al = |B]

Proof. For independent two r.v.’s X ~ N (0, B), Y ~ N (0, A— B), consider h(X +Y).
Then, we have h(X +Y) > h(X + Y|Y) = h(X|Y). Hence, 1log((2me)"|A|) >
1 log((2me)"| BY). O
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Now we can prove (ii). From (i), we have

1 |Kxyz]
(XY < —log ————
( 1 1) Z 2 g ‘KZ|
Since 2(Kx + Kz) — Kx+z = Kx_z > 0, the above lemma implies |K x| < |2(Kx +
Kz)| = 2"|Kx + Kz|. Therefore,

| Kx1z|

|Kz|
2" Kx + Ky|

| K|

K K
[Kx + Kg|  n

|K7| 2
n
2
We are done. N

I(XT5Y)") < 5 log

IN

IN

1

2

1
élog
1

-1

2 %

< nCyp +

Definition) Causally related.
Random vector X7 is causally related to Z7 iff

n

plat,20) = p(e) [ [ plalai™, 71

i=1
Reflection) A few properties of causally related random vector.
(i) The most general causal dependence of X}" on Y{" is
X =BZ+V (V depends on W)
where B is strictly lower triangular.

(ii) Causally related channel capacity is

1 |[(B+D)Kz(B+1)+ Ky
Crpn = max — log
Lir(BK 7 BU+Ky) <P 21 | Kz
Proof. From the above proposition (i), ]

Proposition) sharp bound for capacity.

(i) The information capacity of correlated gaussian channel with feedback per transmission
can be bounded above as

CYFB,n S 2Cn

where C), is a correlated gaussian channel capacity per transmission.
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Proof. We need following lemmas.

Lemma) Determinant is log-concave on p.s.d. cone.
For A>0, B> 0, € [0,1], we have
A+ (1= 2B = [APB[ (6)
Proof. For independent r.v.’s X ~ N(0,4), Y ~ N(0,B), Z ~ Ber()), consider
W =7X+ (1—Z)Y. Note that Var(W) =E(W?) = AA + (1 — A\)B. Then
1
5 log(2me)"|AA + (1 — \)B| > h(W)

> h(W|Z)
> Mo(X) 4 (1 = NA(Y)

1
= - log(2me)"|AP|BI'

O
Lemma) Entropy and variance of causally related random process.
If X7 and Z7 re causally related, then
WXT = Z27) = h(Z7) (7)
and
|[Kx—z| > |Kz| (8)
Proof.

WXT—Z7) =Y h(X;— Z|Xi™t = 27

=1

> Z h(X; — Zi| X}, Z™") (.- Conditioning reduces entropy)
i=1

=Y WZiIXi, Zi7Y)

i=1
=Y WZlzi™)
i=1
= h(Z7)
1

First, taking a supremum w.r.t. X" — Z7' gives ;log(2me)"|Kx_z| > h(Z}). Then,

taking a supremum w.r.t. Z7 gives |Kx_z| > |Kz|. O
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Now we can prove (i).

1 ) [Kx+ Kz 1 13K x+7 + 35 Kx_7]

m BT Ky on B K|

| Kxiz]2|Kx_g|2

Cn =

1
1 ..
L | Kxagb K E
> —1lo

: S )

v

1 Ky
on % K|

2
1
1

2
> —Cppa
5 LFB,

7.6 Multiple-Input Multiple-Output (MIMO)
Definition) Multiple-Input Multiple-Output (MIMO).

y=Hx+n
where H € C"™** E(n) = 0, E(nn*) = I, with power constraint E(z*z) = trE(z*z) < P.
Note that SNR (signal to noise ratio) is p = % =P.

Definition) Complex gaussian.

Given z € C", define T = Re(z) c R?".
Im(z)

x is said to be (complex) gaussian if & is gaussian.

x is circulary symmetric if

E((G — E(2)(& — E@))") = % (fiﬁégi }ifééﬁ?) -

for some Hermitian p.s.d. Q € C™*™.
Note that E((z — E(x))(z — E(z)*) = Q.

Joint pdf is defined as

ruq(x) = det(nQ) ™ exp(—(& — 4)* Q™' (& — f1))
= det(nQ) ™ exp(—(z — )" Q"' (x — )

Reflection) Some properties.

(i) Joint entropy of complex gaussian is H(rg) = log det(me()).
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Proposition) MIMO capacity.

(i) Let = be a circularly symmetric gaussian with zero-mean and covariance %It. The
information capacity of MIMO y = Hx + n is

P
C = Ellogdet(I, + ?HH*)]
When n — infty, C — rlog(1+ P)

Proof. For the capacity if ¢ — 0o, note that %HH* — I, as t — oo by SLLN. O

7.7 MIMO Detectors
r=Ha+n

We want to find a which minimize ||n|| for some sense.

7.7.1 Maximum Likelihood (ML) detector

e 4 = argmax, ||r — Hal|% where the optimization is done by exhaustive search over Va.

e ML detection is optimal

7.7.2 Zero Forcing (ZF) detector
= Gzrr =a+ H'n where Gzr = H' = (H*H)'H*.

Q>

e (Gzp increases noise.

7.7.3 MMSE detector
o 4= Guymser =a+ Hin where Gyyse = (H*H + %IN)_lH* with SNR p.

o Guumse = (H"H + ;Iy)""H* is a solution of arg ming €[|Gr — a||% where
e MMSE receiver has good performance with reasonable complexity

e This is a mitigated version of ZF detector.

7.7.4 V-BLAST detector

o 7
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8 Rate Distortion Theory

8.1 Lloyd algorithm

The goal of Lloyd algorithm is to find a set of reconstruction points.

1. Given t-th reconstruction points xgt), e ,xﬁf ), find optimal set of regions

R; = {a||lz — 2| < [l — «{M|| vj}

B fRz’ zdP(z)

2. Compute 2V = E(z|R;) = T, dP(x)
R;

%

3. Interate step 1 and 2.

8.2 Rate distortion code

Definition) Distortion.

A distortion measure is a mapping
d: X x .)E' — RZO
d is bounded iff

max d(z,T) < oo
(z,8)eX x X

The distortion between sequence z7, 27 is
n sn 1 -,
d(z},27) = - E d(z;, ;)

Definition) Rate distortion code.

A (2" n) rate distortion code consists of
1. An index set I = {1,...,2"%}.
2. An encoding ftn f, : X — [2"].
3. A decoding ftn g, : [2"7] — X",
4. A distortion is defined by
D, = Ed(X}, X)) = Ed(XT, gu(fu(X7)))
=Y pat)d(, gu(fu(21))
o

(R, D) is achievable iff 3(2"% n) codes (f,, gn) with D,, — D as n — oo

R(D) = infy hievable (R,D) R
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D(R) = inf D

Information R — D function is

achievable (r,D)

RD(D) = min I(X: X)

pX\x:E<X,X>~pX‘XpXd(x,g:n)gp
for given px
Proposition) Properties of R)(D).

(i) RY(D) is non-increasing.
Proof. Trivial from the definition. m
(i) RD(D) is convex.

Proof. We need to consider a new distortion Dy = ADy+(1—\)D; for given distortions
Dy, Dy with A € (0,1). Let’s assume that we achieve (Rél), Dy), (Rgl),Dl) with dis-
tribution pg v,o(27), px x (£]). Let pgin(Ex) = Apg xo(2]r) + (1 = XN)pg x (2]2).
Then,

A

]pX|X;A (X7 X) S A]PX‘X;O <X7 X) + (1 - A)]pj(‘x;l (X7 X) (." "
Therefore,

(X;X)+ (11— NI

RO(Dy) <, (X;X)<A pipea (X X)

X\XA Px|x;0

= RD(Dy) < ARD(Dy) + (1 = NRD(Dy)

Exercise) Compute R — D function for a few examples.

a) Binary case.
For Hamming distance d(z, %) = I(x # %), Ber(p) on X,

RY(D) = {H(p) —H(D)  0<D<min(p,1-p)
0 0.W.
Proof. We may assume that p < 1.

I(X; X) = h(X) — h(X|X)
= h({p,1=p}) — h(X & X|X)
> h({p,1-p}) = H(X @ X)
= h({p,1 —p}) = h({P(X # X),1 - P(X # X)})
= h({p.1 - p}) — H({Ed(X, X),1 — Ed(X, X)})
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c)

Note that Ed(X, X) < D. Therefore, h({Ed(X, X),1 —Ed(X, X)}) < H{D,1 — D})
for D < %

[(X; X) = h({p,1 - p}) — h({Ed(X, X),1 — Ed(X, X)})

TR

> h({p,1—p}) — h({D,1=D}) for D <

Consider a BSC model s.t. decode X ~ Ber(r). Distortion constraint Ed(X. LX) <
D < 7 implies P(X = 1) = P(X = 1|X = )P(X =1) + P(X = 1|X = 0)P(X = 0).

_ p=D
Therefore, r = 5.

(a) For D < p < 3, let P(X =1)=r = =L Then, we have I(X,X) = H(p) —

2D"
H(D).
(b) For D > p, let P(X = 0) = 1. Then, we have I(X, X) = 0 where Ed(X, X) =
p<D.
We are done by symmetricity for p > % [

Gaussian case.
For L2-distance d(z,2) = ||z — |2, X ~ N(0,0?%) on X,

1 o2 2
R(I)(D):{Elogﬁ 0<D<o
0 0.W.

Proof. We may assume that p <

~

B

s
Il

v
££3
|
=
<
|
B
=

v

log(2mea?) — h(N(0,E(X — X)?))
o? 1 o?
m) =3 10%(5)

=N~k

log(

(a) For D < o2, letXNN(O,JQ—D) and X = X + Z where Z ~ N(0,D), X 1L Z.
Then, we have I(X, X) = Llog(%).

(b) For D > 02, let X = 0. Then, we have I(X, X) = 0 where Ed(X,X) = ¢® < D.

[

Parallel gaussian case.
For L2-distance d(z, %) = ||z — 2|2, X; ~ N(0,0?) on X,

R(D) =3 jllog -1*

=1

where D; = min()\, 07) with \ satisfying > " | D; = D.
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Proof.

I(X7 X7) = h(X]) — h(X]|XT)

=) (X)) - Zn: h(X; - Xi| X X7

i=1 =1

> Z h(Xi) — Z W(Xi — Xi|Xi) if f(a|2]) = Hf(l"z@z)

=1 i=1 i=1

> R(D;) if X; ~N (0,07 — D;) where D; = E((X — X)?)

=1
1 < o?
=3 > llog E]Jr

i=1
So, we need to optimize followings

aZ?)
D;
subject to ZDi <D, D; >0

1
Minimize Z 5 log(1 +

Therefore, we are done.

8.3 R-D theorem
Definition) Jointly typical sequences.

The set A™ of jointly typical sequences {(z},27)} is defined as

n n o an 1 n 1 ~n %
Ay) = {(@4,39) | max(| — —logp(e}) — H(X)| | =~ logp(df) — H(X)],

1 ~n % n an %
| - Elogp(ff,iﬂl) - H(XaX)|7 |d($17$1)) - Ed(XvX)D < E}

where p(a7,@7) = [[}L, p(2i, @), d(=7, 27) = 5 300, d(wi, ).
Theorem) Joint AEP.

Let (X7, X™) el Px|xPx- Then,

1L P((Xp, X7) € A")) — Lasn — oo

2. V(ap,a7) € A7),

p(&7) > p(af|at)2 IXX)-39
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Proof. 1 is trivial. For 2,

p(Et) = pat, 21) (&) p(at, 27)
1/ = n - n ~n
p(z?) p(x7)p(27)
2—n(H(X,X)—e)

> p(z? ¢
= p(xl ) 9—n(H(X)—€)9—n(H(X)—e)

> p(a7, |27])2 —IX5%)-3¢)

[]

Theorem) R-D theorem. Assume that a distortion measure d is bounded. Then, if R >
RY(D), then (R, D) is achievable. Conversely, any code that achieves distortion D with
rate R must satisfy R > RU)(D).

Proof. We assume that R > RU)(D). Fix 6 > 0. To show that (R, D) is achievable, we need
to construct encoding and decoding functions (f,,g,) with index set I = [2"f] satisfying

D, = Ed(X7, gn(fo(X™)) < D + 6. First, generate X;(w) - Pxx, Vi € [n], Yw € [27F].
For T(X7") = {w € [2"R]|(X", X(w)) € Agfg}, define an encoding function f, : X" — [2"]
n 1 -

1 0.W.
Define a decoding function g, : [2"7] — X" = x™
gn(w) = X7'(w)

Note that X{b({(f) ‘= gn(fu(X7)) is a r.v. since it is a function of X7 and X7. Compute
E(X%XIL)d(X?,X{L(X”)) as follows.

E AT, X)) = By B, d(XT KT (X))

Xopx, Xpg x
= ExopxBxop o rixpaod(X1 X Xp(x ))_'_EXNPXEXNme,T(X{’):(Z)d(XIL7X?(X{L))
<1+ (Dot ) + P(XT, X(w)f) ¢ A7) Vo € [277]) - diax

Let’s bound P((X, X (w)) ¢ Adn6 Vuw € [2"]) as follows.

P((X7, X7'(w)) ¢ ALY vw € [2"7)) Zp z7) > p(27)

e (x,&7 (w))gEA((;;) Vwe[2nf]

=D pe}) Do P, 3 (w) ¢ Af) Yw € [271)
= )L = Y pEn (a7, #1(w)) € AL Yw € [277))]

21’1,}?
= [ TPy, (X ¢ A2 i)
2”R A
= [TI0-Prey (h X0 w) € A dPr(al)
w=1
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Conversely, assume that we have a code with distortion less than D. Then,

nR > H(X})
> H(XD) — H(XP|XT) = I(Xf,f(”) (- XTis a ftn of XT)

i.0.d.

> H(X?) — H(XP|X") = ZH )= > H(X|X7, XY (o X "N py)

i=1

> > H(X) - ZH(XiIfQ) = ZI(XZ-,)C)

> 3 ROE(X, X)) = nt 37 ROEEY £0)

1 .
> nR(I)(E ZE(d(Xi,Xi))) (.- RY) is convex , Jensen)

= nRU(E(d(XT, X))
>nRY(D) (. RY is non-increasing)
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9.1

Variational Auto Encoder (VAE)

Problem Setting
Given probability space (€2,.4,P)
X =RP : a data space

Z =R?: a latent space

Data ™), 2, ... are realizations of ar.v. X : Q = X
Hidden states 2z, 23 ... are realization of ar.v. Z: Q — Z.
We assume that X, Z ~ pxz( -, -;0) and Z ~ pz( - ;0) where pz( - ;0) is in the

exponential family.
Conventionally, we simply assume that pz( - ;0) = N(0, I).
@ is governed by 2. Specifically,

1. Generate z®
2. Then, xX@ NpX‘Z:z(z‘)( : |2(i)§9*)

Furthermore, we assume that

L. px(2;0) = [ px|z=-(2|2;0)pz(2;0)dz dz is intractable (so we cannot evaluate or differ-

9.2

entiate the marginal likelihood)

. True posterior density pzx—.(z|z;0) = Px1z=: 120020 4o intractable (so the EM

px (%;0)
algorithm cannot be used), and where the required integrals for any reasonable mean-

field VB algorithm are also intractable.

A large dataset: we have so much data that batch optimization is too costly; we would
like to make parameter updates using small minibatches or even single datapoints.
Sampling-based solutions, e.g. Monte Carlo EM, would in general be too slow, since it
involves a typically expensive sampling loop per datapoint.

Goal

. Infer 6*, MAP (MLE) of #*

Given (), generate 6
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9.3 The variational bound (Evidence Lower Bound, ELBO)

Recall that we want to obtain 6*, MAP (MLE) of 6%, that maximize log-likelihood log px (z; 6).
Hence, we start from:

log px (;0).

To estimate the log-likelihood, we introduce an alternative pdf ¢z x—,(:|x; ¢) of Z depending
on x and ¢. We hope that this pdf would be a proxy of the true posterior pzx—.(-|z;0).
With these pdfs, we do a little trick as follows:

log px(l'; 0) = EZN‘IZ\X:;C('|27;¢) [lngX ((IJ; 9)]
Qz1x=(Z|7;¢)  pzix=2(Z]2;0)
Qz1x=2(Z|7;9)  pzix=:(Z|2;0)

)]

= Ezmqzx_0 (a:0) [108(px (25 0) -

Then we extract the KL-divergence between qzx—.(:|7; ¢) and pzx—.(:|x; 0):

Pzix= +(Z|z;0) 1 qZ|X=1'(Z’x;¢)
4z|x= x(Z| )> s pZ|X:x(Z|9C§ 0)

(Zle:6) | 1, 2|z AL
s Z|x’¢>)]+ (z1x=2(Z |25 9)||P21x=2(Z |2 0))
> L0, ¢; x)

]

log px (2;0) = Eznq,x_, (fu:0) [l0g(px (2 6) -

Pz|X=x

= EZNQZ\X:x("x§¢) [lOg(pX (SU; 9) ’

where

ﬁ(@, o; x) = EZNqZ|X:I(-|x;¢)[_ log QZ|X:a:(Z|9U§ ¢) + 10gPX,Z(5E7 Z; 9)]
= Ez gz x—alei0) [ =108 4z1x=2(Z2; ¢) + (log pz(Z; 0) + log px|z (2| Z; 0))]
= —KL(qz1x=:(|z; 9)llpz (51 0)) + Ezngy ., (12iy [l0g Px12(2] Z; 0))]
= regularizer for ¢ 4+ negative reconstruction error

—: ELBO(0, ¢; ).

Hence, maximizing the ELBO means maximizing the log-likelihood px (x;8).

9.4 The SGVB estimator

Now, we want to maximize the ELBO:

L0, 9;7) = Ezegy x_(|eo) [~ 108 qz1x=2(Z]7; ) + log px 2 (7, Z;0)]

To this end, we need to generate Z ~ qzx=.(-|z; ¢). As direct sampling from ¢z x—.(|2; ¢)
is impossible, we reparameterize it by

Z = g(e,x; ¢) with € ~ r,
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where g(e, x; ¢) is a differentiable transformation and r. is a distribution that is easy to
sample. Hence, with the sampled 2 = 2, Stochastic Gradient Variational Bayes (SGVB)
estimator is defined as follows:

L
L4, ¢ 1 Z — 108 gz x =00 (31" |27; 6) + log px 2(2?, ;0]

where % = g(e;, 20; ) with & "% r,.

9.5 The AEVB estimator
The ELBO can be written in another form as well:
L0, ¢;2) = =K L(qzx=2(-|7; 9)[[p2(+;0)) + Ezegy o, (i) log px|2(2| 25 0)).

Assume that we can analytically integrate K L(qzx=z(-|7; ¢)||[pz(:;¢)). Under such assump-
tion and sampled 2 = 2V, Auto Encoding Variational Bayes (AEVB) estimator is defined
as:

L
L5(0, ¢; W) & _KL<qZ|X:$(i)("l’( &) |lp2 (- Z IngX|Z ~(1 )|Zl )
where £ = g(e, 29; ¢) with & "X re.

Exercise) VAE.

a) Indeed, if we assume ¢ A re =N (O I), the analytic integration becomes possible.

With @ € R? and 0@ € RZ, ie., outputs of the encoding MLP for 2 under

variational parameters ¢, we obtain zl( as follows:

3" = gla,a®:9) == u 10"
Hence, we have 2 ~ A (4@, £®) where £ = diag((a\")2, ..., (¢'”)2). Now, we can

do the analytical integration by computing the KL divergence between two normal
distribution A(0,I) and N (u®, £®);

1 d
(6, 6:27) ~5(d+ > log(of) — w2 = Yo
1 521
7 [IOgPX\Z ;)(x |§lZ)79))]
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10 Parsing

10.1 CKY algorithm

We are given as follows:

e CFG (N,X, R, S) where N (¥) is a of non-terminals (terminals), R is a set of rules,
and S € N is a start non-terminal (NT).

e Risin CNF, i.e., r € R is either (X — Y7Y5 for some X,Y1,Y; € ¥) or (X — S for
some X € ¥ and § € N).

e ¢ is a probability over R, i.e., we have a PCFG.

e s = w;---w, Iis a sentence of n tokens.

Our goal is to find the most probable derivation ¢ of s.

Define a Chart To achieve this goal, CKY algorithm defines a n?|N|-sized chart = where
each cell 7 (4, j, X) is the maximum probability of a tree with the root X spanning w; - - - w;
for i,7 € {1,...,n} and X € N. Then, our goal is to find the derivation that attains
m(1,n,S).

Dynamic Programming Note that we have following base cases:
and the recursive formula:

W(i,j, X) = VkGIl’l{ian} Q(X — YZ) ' ﬂ-(ia ka Y) ) 71-(]'{:7]'7 Z)
V(Xa};é’)e’R

To fill out each cell, we need to check n|N|?* candidates.

Complexity We have n?|N| cells, each of which require n|N|? checks. Hence, the compu-
tational cost is n®|N|>.

10.2 Lexicalized PCFGs

Weaknesses of PCFGS Lack of (1) sensitivity to lexical information, e.g., workers
dumped sacks into a bin, and (2) structural frequencies, e.g., dogs in houses and cats.
Refer to the the slide 50-55.

Lexicalization Main idea is to lexicalize rules to get lexical information at every node,
i.e., define a head for every rule in the grammar (one child on RHS). This defines the head
word of every phrase, which will provide a lexicaliztation of rules

The immediate question is, how to determine a head for each rule?. This is called lexi-
calization rule. Basically, a VP has a verb as a head and a NP has a noun as a head. Details
about lexicalization rule is manually defined. Refer to the {the slide 63- about lexicalized

PCFGs.
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