Information Theory

Segwang Kim

February 18, 2023

Contents

1	Entropy, Relative Entropy, Mutual Information	3		
	1.1 Entropy	3		
	1.2 Conditional entropy	4		
	1.3 Relative entropy	5		
	1.4 Mutual Information	6		
2	Asymptotic Equipartition Property (AEP)	9		
	2.1 AEP	9		
3	Entropy Rates			
	3.1 Entropy rates	10		
	3.2 Markov Process	10		
	3.3 Hidden Markov Models	11		
4	Data Compression	13		
	4.1 Data Compression	13		
	4.2 Shannon Coding	14		
	4.3 Huffman Coding	15		
	4.4 Shannon-Fano-Elias Coding (Alphabetic code)	15		
	4.5 Channel Capacity	17		
5	Channel Capacity	17		
6	Differential Entropy	24		
•	6.1 Differential Entropy, Relative Entropy, Conditional Entropy, Mutual Informa-			
	tion	24		
	6.2 AEP for continuous r.v	24		
7	Gaussian Channel	28		
	7.1 Gaussian Channel	28		
	7.2 Parallel gaussian channel	30		
	7.3 Correlated gaussian noise channel	31		
	7.4 Stationary colored gaussian noise channel	39		

	7.5	Correlated gaussian channel with feedback	33
	7.6	Multiple-Input Multiple-Output (MIMO)	37
	7.7		38
		7.7.1 Maximum Likelihood (ML) detector	38
			38
		7.7.3 MMSE detector	38
		7.7.4 V-BLAST detector	38
8	Rate	e Distortion Theory	39
	8.1	Lloyd algorithm	39
	8.2	Rate distortion code	39
	8.3	R-D theorem	42
9	Vari	iational Auto Encoder (VAE)	45
	9.1	Problem Setting	45
	9.2	Goal	45
	9.3	The variational bound (Evidence Lower Bound, ELBO)	46
	9.4	The SGVB estimator	46
	9.5	The AEVB estimator	47
10	Pars	\sin g	48
		8	48
			48

Now, we assume that all random variables are discrete.

For the joint pdf p of r.v.'s X, Y, denote $p(x) = \int p(x,y)dy$, $p(y) = \int p(x,y)dx$ and so on.

Denote ran(X) be a range of a r.v. X.

Denote $X_i^j = (X_i, \dots, X_j)$, its realization is $x_i^j = (x_i, \dots, x_j)$

1 Entropy, Relative Entropy, Mutual Information

1.1 Entropy

Definition) Entropy.

X: r.v. with the pdf p(x)

$$H(X) = \mathbb{E}_X(\log \frac{1}{p(X)})$$

For X = i w.p. $p_i, i = 1, ..., n$,

$$H(\{p_1,\ldots,p_n\}) := H(X)$$

Especially, for
$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$

$$H(p) := H(X)$$

Proposition) Properties of Entropy.

- (i) Shift invariant: H(X) = H(X + a) for $a \in \mathbb{R}$.
- (ii) Non-negativity: $H(X) \ge 0$.
- (iii) $X \sim U([n])$ where $[n] = \{1, ..., n\}$, then $H(X) = \log(n)$.
- (iv) $H(X) \leq \log |ran(X)| = H(U)$ where |ran(X)| is the number of elements in the range of $X, U \sim U(ran(X))$.
- (v) $H({p_i})$ is concave w.r.t. ${p_i}$.

Proof. Consider
$$D({p_i}||U) = \log |ran(X)| - H({p_i}).$$

Definition) Joint entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$H(X,Y) = \mathbb{E}_{X,Y}(\log \frac{1}{p(X,Y)})$$

Proposition) Properties of Joint Entropy.

(i) If X, Y are independent, H(X, Y) = H(X) + H(Y)

1.2 Conditional entropy

Definition) Conditional entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$H(Y|X) = \mathbb{E}_{X,Y}(\log \frac{1}{p(Y|X)})$$

Proposition) Properties of Conditional Entropy.

- (i) Non-negativity: H(Y|X) > 0
- (ii) Chain rule: H(X,Y) = H(X|Y) + H(Y)
- (iii) Chain rule': $H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i|X_1^{i-1})$
- (iv) H(X, Y|Z) = H(X|Y, Z) + H(Y|Z)
- (v) $H(X|Y) \leq H(X)$. The equality holds when X, Y are indep.
- (vi) For stationary process $\{X_n\}$, i.e. $p(X_i^j) = p(X_{i+1}^{j+1})$, $H(X_n|X_1^{n-1})$ is nonnegative and decreasing, thus it must have limit.

Proof.
$$H(X_n|X_1^{n-1}) \ge H(X_n|X_2^{n-1}) = H(X_{n-1}|X_1^{n-2}) \ge 0,$$

(vii) For $g: ran(X) \to \mathbb{R}, H(g(X)) \le H(X)$

Proof.
$$H(X, g(X)) = H(g(X)) + H(X|g(X)) \ge H(g(X)), \ H(X, g(X)) = H(X) + H(g(X)|X) = H(X)$$

- (viii) H(Y|X) = 0 iff Y is a ftn of X
- (ix) A sequence of r.v.'s $\{X_i\}$ forms a Markov chain, then, $H(X_0|X_n)$ and $H(X_n|X_0)$ are non-decreasing with n.

Proof.
$$I(X_0; X_{n-1}) \geq I(X_0; X_n)$$
. Refer proposition (ii) of 1.2.

Theorem) Fano's inequality.

Consider r.v.'s X, Y with the joint pdf. Let $P_e = \mathbb{P}(\hat{X}(Y) \neq X)$. Then,

$$P_e \ge \frac{H(X|Y) - 1}{\log|ran(X)|}$$

1.3 Relative entropy

Definition) Relative Entropy (Kullback Leibler distance).

For pdfs p(x), q(x),

$$D(p||q) = \mathbb{E}_{X \sim p}(\log \frac{p(X)}{q(X)})$$

Proposition) Properties of Relative Entropy.

(i) $D(p||q) \ge 0$. The equality holds when p = q w.p. 1.

Proof. Use Jensen inequality.

(ii) D(p||q) is convex in the pair of (p,q), i.e. For $\lambda \in [0,1]$, pairs of pdfs (p,q), (p',q'),

$$D(\lambda p + (1 - \lambda)p' \| \lambda q + (1 - \lambda)q') \le \lambda D(p\|q) + (1 - \lambda)D(p'\|q') \tag{1}$$

Proof.

$$\lambda D(p||q) + (1 - \lambda)D(p'||q') = \sum_{x} (\lambda p(x) \log(\frac{p(x)}{q(x)}) + (1 - \lambda)p'(x) \log(\frac{p'(x)}{q'(x)}))$$

$$= \sum_{x} (\lambda p(x) \log(\frac{\lambda p(x)}{\lambda q(x)}) + (1 - \lambda)p'(x) \log(\frac{(1 - \lambda)p'(x)}{(1 - \lambda)q'(x)}))$$

Note that $\sum_{i=1}^{n} a_i \log(\frac{a_i}{b_i}) \ge (\sum_{i=1}^{n} a_i) \log(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i})$ (: $t \mapsto t \log t$ is convex). Apply this for each term of the above summation.

Definition) Conditional Relative Entropy.

For pdfs p(x|y), q(x|y),

$$D(p(x|y)||q(x|y)) = \mathbb{E}_{X,Y \sim p}(\log \frac{p(X|Y)}{q(X|Y)})$$

5

Proposition) Properties of Conditional Relative Entropy.

(i)
$$D(p(x,y)||q(x,y)) = D(p(y)||q(y)) + D(p(x|y)||q(x|y))$$

1.4 Mutual Information

Definition) Mutual Information.

X, Y : r.v.'s. with the joint pdf p(x, y).

$$I(X;Y) = D(p(x,y)||p_X(x)p_y(y)) = \mathbb{E}_{X,Y \sim p}(\log(\frac{p(X,Y)}{p(X)p(Y)}))$$

= $H(X) - H(X|Y)$

Proposition) Properties of Mutual Information.

- (i) $I(X;Y) \ge 0$.
- (ii) I(X;Y) = 0 iff X, Y are indep.
- (iii) I(X;Y) is concave w.r.t. p(x) for fixed p(y|x).

Proof.

$$I(X;Y) = H(Y) - H(Y|X)$$

First, H(Y) is concave w.r.t. p(x) for fixed p(y|x). Indeed, H(Y) is concave w.r.t. $p(y) = \{p_{y,1}, \ldots, p_{y,n}\}$ and p(y) is linear w.r.t. $p(x) = \{p_{x,1}, \ldots, p_{x,m}\}$ since $p_{y,i} = \sum_x p(Y = y_i|x)p(x)$. Second, H(Y|X) is convex w.r.t. p(x) for fixed p(y|x). Indeed, $H(Y|X) = \sum_{x,y} -p(x,y)\log(p(y|x)) = \sum_x p(x)(\sum_y -p(y|x)\log(p(y|x)))$ is linear w.r.t. p(x).

(iv) I(X;Y) is convex w.r.t. $p_{Y|X}(y|x)$ for fixed $p_X(x)$. i.e., Given $\lambda \in (0,1), p_{Y|X:0}(y|x), p_{Y|X:1}(y|x),$

$$I_{(X,Y)\sim p_{X,Y;\lambda}}(X;Y) \le \lambda I_{(X,Y)\sim p_{X,Y;0}}(X,Y) + (1-\lambda)I_{(X,Y)\sim p_{X,Y;1}}(X,Y)$$
 (2)

where $p_{Y|X;\lambda}(y|x) = \lambda p_{Y|X;0}(y|x) + (1 - \lambda)p_{Y|X;1}(y|x)$.

Proof. Note that $p_{X,Y;\lambda}(x,y) = p_X(x)p_{Y|X;\lambda}(y|x)$. Then,

$$I_{(X,Y)\sim p_{X,Y;\lambda}}(X;Y) = \mathbb{E}_{(X,Y)\sim p_{X,Y;\lambda}} \log \frac{p_{X,Y;\lambda}(X,Y)}{p_{X;\lambda}(X)p_{Y;\lambda}(Y)}$$
$$= D(p_{X,Y;\lambda}(x,y)||p_{X;\lambda}(x)p_{Y;\lambda}(y))$$

Now, we need to compute $p_{X,Y;\lambda}(x,y)$ and $p_{X;\lambda}(x)p_{Y;\lambda}(y)$.

$$p_{X,Y;\lambda}(x,y) = p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)$$

$$= p_X(x)p_{Y|X;\lambda}(y|x)$$

$$= p_X(x)(\lambda p_{Y|X;0}(y|x) + (1-\lambda)p_{Y|X;1}(y|x))$$

$$= \lambda p_{X,Y;0}(x,y) + (1-\lambda)p_{X,Y;1}(x,y)$$

Also,

$$\begin{split} p_{X;\lambda}(x)p_{Y;\lambda}(y) &= \int p_{X,Y;\lambda}(x,y)dy \int p_{X,Y;\lambda}(x,y)dx \\ &= \int p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)dy \int p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)dx \\ &= p_{X}(x) \int p_{Y|X;\lambda}(y|x)dy \int p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)dx \\ &= p_{X}(x) \int p_{X;\lambda}(x)(\lambda p_{Y|X;0}(y|x) + (1-\lambda)p_{Y|X;1}(y|x))dx \\ &= p_{X}(x)(\lambda p_{Y;0}(y) + (1-\lambda)p_{Y;1}(y)) \\ &= \lambda p_{X}(x)p_{Y;0}(y) + (1-\lambda)p_{X}(x)p_{Y;1}(y) \end{split}$$

Therefore,

$$I_{(X,Y)\sim p_{X,Y;\lambda}}(X;Y) = D(p_{X,Y;\lambda}(x,y)||p_{X;\lambda}(x)p_{Y;\lambda}(y))$$

$$= D(\lambda p_{X,Y;0}(x,y) + (1-\lambda)p_{X,Y;1}(x,y)||\lambda p_{X}(x)p_{Y;0}(y) + (1-\lambda)p_{X}(x)p_{Y;1}(y))$$

$$\leq \lambda D(p_{X,Y;0}(x,y)||p_{X}(x)p_{Y;0}(y)) + (1-\lambda)D(p_{X,Y;1}(x,y)||p_{X}(x)p_{Y;1}(y)) \quad (\because (1))$$

$$\leq \lambda I_{(X,Y)\sim p_{X,Y;0}}(X,Y) + (1-\lambda)I_{(X,Y)\sim p_{X,Y;1}}(X,Y)$$

Definition) Conditional Mutual Information.

X, Y, Z: r.v.'s. with the joint pdf p(x, y, z).

$$I(X;Y|Z) = \mathbb{E}_{X,Y,Z \sim p}(\log(\frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}))$$
$$= H(X|Z) - H(X|Y,Z)$$

Proposition) Properties of Conditional Mutual Information.

(i)
$$I(X;Y|Z) \ge 0$$

Proof.

$$I(X;Y|Z) = \mathbb{E}_{X,Y,Z \sim p}(\log(\frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}))$$
$$= \mathbb{E}_{Z \sim p}[\mathbb{E}_{X,Y \sim p_{X,Y|Z}}(\log(\frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}))] \ge 0$$

(ii) Chain rule: $I(X_1^n; Y) = \sum_{i=1}^n I(X_i; Y | X_1^{i-1})$

Theorem) Data processing Inequality.

R.v.'s $X \to Y \to Z$ form a Markov chain. i.e. p(z|x,y) = p(z|y), then,

$$I(X;Y) \ge I(X;Z)$$

This means, no clever manipulation of the data can improve the inferences that can be made from the data.

Proof.
$$I(X;Y) - I(X;Z) = I(X;Y|Z) \ge 0$$

Corollary) In particular,.

- (i) If Z = g(Y), we have $I(X; Y) \ge I(X; g(Y))$
- (ii) If $X \to Y \to Z$, then $I(X;Y|Z) \le I(X;Y)$

Exercise) Some examples of Conditional Mutual Information.

- a) I(X;Y|Z) < I(X;Y) if $X \sim Ber(1/2), X = Y = Z$
- b) I(X;Y|Z) > I(X;Y) if $X, Y \stackrel{i.i.d.}{\sim} Ber(1/2), Z = X + Y$

2 Asymptotic Equipartition Property (AEP)

2.1 AEP

Theorem) (AEP).

 X_i : i.i.d. r.v.'s with pdf p

$$-\frac{1}{n}\log p(X_1,\ldots,X_n)\to H(X)\quad \text{a.s.}$$

Definition) Typical set.

The typical set $A_{\epsilon}^{(n)}$ is

$$A_{\epsilon}^{(n)} = \{(x_1, \dots, x_n) : |-\frac{1}{n}\log p(x_1, \dots, x_n) - H(X)| < \epsilon\}$$

Proposition) Properties of Typical sets.

- (i) For $x_1^n \in A_{\epsilon}^{(n)}$, $2^{-n(H(X)+\epsilon)} \le p(x_1^n) \le 2^{-n(H(X)-\epsilon)}$.
- (ii) $\mathbb{P}(X \in A_{\epsilon}^{(n)}) \ge 1 \epsilon$ for sufficiently large n.
- (iii) $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$

Proof.
$$1 = \sum_{x_1^n} p(x_1^n) \ge \sum_{x_1^n \in A_{\epsilon}^{(n)}} p(x_1^n) \ge \sum_{x_1^n \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)} = |A_{\epsilon}^{(n)}| 2^{-n(H(X)+\epsilon)}$$

(iv) $|A_{\epsilon}^{(n)}| \ge (1 - \epsilon)2^{n(H(X) - \epsilon)}$ for sufficiently large n

Proof.
$$1 - \epsilon < \mathbb{P}(X_1^n \in A_{\epsilon}^{(n)}) = \sum_{x_1^n \in A_{\epsilon}^{(n)}} p(x_1^n) \le |A_{\epsilon}^{(n)}| 2^{-n(H(X) - \epsilon)}$$
 for sufficiently large n

Theorem) Implication of AEP to data compression.

 X_i : i.i.d. r.v.'s with pdf p. There exists a data compression code (bijection) s.t. for $\epsilon > 0$

$$\mathbb{E}(\frac{1}{n}l(X_1^n)) < H(X_1^n) + \epsilon$$

where $l(X_1^n) = \sum_{X_i}$ (length of the code for X_i)= $\sum_{X_i} l(X_i)$, $X_1^n = (X_1, \dots, X_n)$

Proof. For $X_1^n \in A_{\epsilon}^{(n)}$, encode it by $nH(X_1) + \epsilon + 2$ bits. Otherwise, by $n \log(|ran(X_1)|) + 2$ bits. It means, encode naively. (the number of possible outcome= $|ran(X_1)|^n$)

$$\mathbb{E}(l(X_1^n)) = \sum_{x_1^n \in A_{\epsilon}^{(n)}} p(x_1^n) l(x_1^n) + \sum_{x_1^n \notin A_{\epsilon}^{(n)}} p(x_1^n) l(x_1^n)$$

$$= \mathbb{P}(X_1^n \in A_{\epsilon}^{(n)}) (nH(X_1) + \epsilon + 2) + \mathbb{P}(X_1^n \notin A_{\epsilon}^{(n)}) (n\log(|ran(X_1)|) + 2)$$

$$< (nH(X_1) + \epsilon + 2) + \epsilon (n\log(|ran(X_1)|) + 2)$$

3 Entropy Rates

3.1 Entropy rates

Definition) Entropy rates.

The entropy rate of a r.p. $\mathcal{X} = \{X_i\}$ is

$$H(\mathcal{X}) = \lim_{n} \frac{1}{n} H(X_1^n) = \lim_{n} \frac{1}{n} H(X_1, \dots, X_n)$$

provided the limit exists.

Alternatively (in case of \mathcal{X} is stationary),

$$H'(\mathcal{X}) = \lim_{n} H(X_n | X_1^{n-1})$$

provided the limit exists.

Theorem) Two definitions coincide in case of stationary distribution.

If \mathcal{X} is stationary, then $H(\mathcal{X}) = H'(\mathcal{X})$, i.e.

$$\lim_{n} \frac{1}{n} H(X_1^n) = \lim_{n} H(X_n | X_1^{n-1})$$

Proof. $\frac{1}{n}H(X_1^n) = \frac{1}{n}\sum_{i=1}^n H(X_i|X_1^i) = \lim_n H(X_n|X_1^{n-1})$ by Cesaro sum.

3.2 Markov Process

Definition) Markov Process.

A r.p. $\mathcal{X} = \{X_i\}$ is a Markov process (m.p.) if

$$\mathbb{P}(X_n = x_n | X_1^{n-1} = x_1^{n-1}) = \mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1})$$

for all n.

A m.p. $\mathcal{X} = \{X_i\}$ is stationary (s.m.p.) if $\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1})$ is indep of $n. \to H(\mathcal{X}) = H(X_2 | X_1)$.

Transition matrix M for a m.p. $\mathcal{X} = \{X_i\}$ with $ran(X) = [m] = \{1, \dots, m\}$ is

$$M = [p_{ij}]_{1 \le i,j \le m}$$
 where $p_{ij} = \mathbb{P}(X_n = j | X_{n-1} = i)$

Denote $M^n = [p_{ij}^{(n)}].$

A m.p. $\mathcal{X} = \{X_i\}$ is irreducible if there exists $m \in \mathbb{N}$ s.t. $\forall i, j \in [m], \exists n \in \{0\} \cup [m]$ with $p_{i,j}^{(n)} > 0$.

A m.p. $\mathcal{X} = \{X_i\}$ is aperiodic if for given $N \in \mathbb{N}, \forall i, j \in [m], \exists n > N \text{ with } p_{ij}^{(n)} > 0.$ \rightarrow (Aperiodic \subset Irreducible)

A stationary distribution μ for a m.p. $\mathcal{X} = \{X_i\}$ satisfies $\mu = \mu M$

Theorem) Entropy rate of s.m.p..

If \mathcal{X} is s.m.p., then.

$$H(\mathcal{X}) = -\sum_{ij} \mu_i p_{ij} \log p_{ij}$$

Proof. Since it is stationary and Markov, $H(\mathcal{X}) = \lim_n H(X_n|X_1^{n-1}) = \lim_n H(X_n|X_{n-1})$. So, $\lim_n H(X_n|X_{n-1}) = H(X_2|X_1 = \mu) = \mathbb{E}_{X_1 \sim \mu}(\mathbb{E}_{X_2|X_1 \sim p(x_2|x_1)}(\frac{1}{\log p(X_2|X_1)}))$ where μ is a stationary distribution.

Exercise) A few examples.

a) For a m.p. with transition matrix $M = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$, A stationary dist. is $\mu = (\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta})$ $H(\mathcal{X}) = \frac{\beta}{\alpha + \beta} H(\alpha) + \frac{\alpha}{\alpha + \beta} H(\beta) \leq H(\mu) = H(\frac{\alpha}{\alpha + \beta})$

3.3 Hidden Markov Models

Definition) Markov Process.

A r.p. $\mathcal{Y} = \{Y_i\}$ is a Hidden Markov process (h.m.p.) if $Y_i = \phi(X_i)$ for some $\phi : \mathbb{R} \to \mathbb{R}$ and a m.p. $\{X_i\}$

 \mathcal{Y} is stationary but not necessarily a m.p..

Lemma) Initial conditioning reduces entropy.

 $\mathcal{Y} = \{Y_i\}$ is a h.m.p. associated with a m.p. $\{X_i\}$. Then,

$$H(Y_n|Y_1^{n-1},X_1) \le H(\mathcal{Y})$$

Proof.

$$H(Y_{n}|Y_{1}^{n-1},X_{1}) = H(Y_{n}|Y_{1}^{n-1},X_{1})$$

$$= H(Y_{n}|Y_{1}^{n-1},X_{1},X_{-k}^{0}) \quad (\because \text{Markov property})$$

$$= H(Y_{n}|Y_{1}^{n-1},Y_{-k}^{0},X_{1},X_{-k}^{0}) \quad (\because \mathcal{Y} = \{Y_{i}\} \text{ is a h.m.p.})$$

$$\leq H(Y_{n}|Y_{-k}^{n-1}) = H(Y_{n+k+1}|Y_{1}^{n+k}) \to H(\mathcal{Y}) \quad \text{as } k \to \infty$$

Lemma) Initial conditioning approaches to the entropy rates.

 $\mathcal{Y} = \{Y_i\}$ is a h.m.p. associated with a m.p., $\{X_i\}$. $H(X_1) < \infty$. Then,

$$H(Y_n|Y_1^{n-1}) - H(Y_n|Y_1^{n-1}, X_1) \to 0$$
 as $n \to \infty$

Proof.

$$H(Y_n|Y_1^{n-1}) - H(Y_n|Y_1^{n-1}, X_1) = I(X_1; Y_n|Y_1^{n-1})$$

Since
$$H(X_1) \ge I(X_1; Y_1^n) = \sum_{i=1}^n I(X_1; Y_i | Y_1^{i-1})$$
, it follows that $I(X_1; Y_n | Y_1^{n-1}) \to 0$ as $n \to \infty$

Theorem) Initial conditioning approaches to the entropy rates.

 $\mathcal{Y} = \{Y_i\}$ is a h.m.p. associated with a m.p., $\{X_i\}$. $H(X_1) < \infty$. Then,

$$H(Y_n|Y_1^{n-1}, X_1) \le H(\mathcal{Y}) \le H(Y_n|Y_1^{n-1})$$

 $\lim H(Y_n|Y_1^{n-1}, X_1) = H(\mathcal{Y}) = \lim H(Y_n|Y_1^{n-1})$

4 Data Compression

4.1 Data Compression

Denote \mathcal{D} be a set of alphabets. Its size is $D = |\mathcal{D}|$ Denote \mathcal{D}^* be the set of finite length strings of \mathcal{D} .

Definition) Codeword.

For a r.v. X, The source code is $C : ran(X) \to \mathcal{D}^*$.

The expected length L(C) of a source code C is given by

$$L(C) = \mathbb{E}(l(X)) = \sum_{x} p(x)l(x)$$

where l(x) is the length of C(x)

A source code is nonsingular if it is injective.

The extension of a source code $C: ran(X) \to \mathcal{D}^*$ is $C^*: ran(X)^* \to \mathcal{D}^*$ defined by concatenating codewords, i.e.

$$C^*(x_1^n) = C(x_1) \dots C(x_n)$$

for every $n \ge 0$ and $x_1^n \in ran(X)^n$

A source code $C: ran(X) \to \mathcal{D}^*$ is uniquely decodable (UD) if its extension C^* is nonsingular.

A source code is a prefix code if no codeword is a prefix of any other codeword.

Theorem) Kraft Inequality.

If C is a prefix code, then

$$\sum_{i} D^{-l_i} \le 1$$

(This sum is called Kraft sum)

Conversely, given $\{l_i\}$ satisfying the above inequality, there exists a prefix code with these word lengths.

Proof. (\Rightarrow) Consider a D-ary full tree T with the depth $l_{\max} = \max_i l_i$. Given codewords $\{C(x_i)\}$, we can find the corresponding subset nodes $\{v_i\} \subset T$ satisfying that none of nodes on the path from the root to v_i is v_j node. Therefore, v_i have $D^{l_{\max}-l_i}$ descendents in T, each of those descendents is disjoint. So, $\sum_i D^{l_{\max}-l_i} \leq D^{l_{\max}}$.

$$(\Leftarrow)$$
 Grow a *D*-ary full tree *T* with the depth $l_{\min} = \min_i l_i$.

Theorem) The expected length of a prefix code.

If C is a prefix code associated with a r.v. X on \mathcal{D} , then

$$L(C) \ge H_D(X) = \sum_{x} p(x) \log_D \frac{1}{p(x)}$$

Proof. Consider a prob. dist. $\{q_i\}$ over ran(X) where $q_i = \frac{D^{-l_i}}{\sum_i D^{-l_i}}$. Then, $KL_D(\{p_i\} | \{q_i\}) = -H_D(\{p_i\}) + L(C) + \log_D(K) \ge 0$ with log-base D where $K = \sum_i D^{-l_i}$. The conclusion follows by Kraft Inequality. Furthermore, the equality holds when K = 1, $p_i = q_i = D^{-l_i}$. \square

4.2 Shannon Coding

Definition) D-adic. A pmf is D-adic if each of the probabilities is equal to D^{-n} for some $n \in \mathbb{N}$

Definition) Shannon Coding.

For a r.v. X, Shannon coding $C: ran(X) \to \mathcal{D}^*$ is a code satisfying $l_i = \lceil \log_D \frac{1}{p_i} \rceil$.

Proposition) Properties of Shannon Coding.

- (i) Sub-optimal
- (ii) prefix code (∵ it satisfies Kraft inequality)

(iii)
$$H_D(X) \le L(C) < H_D(X) + 1 \ (\because \log_D \frac{1}{p_i} \le l_i < 1 + \log_D \frac{1}{p_i})$$

Theorem) Optimal prefix codeword length.

If C^* is an optimal prefix code associated with a r.v. X on \mathcal{D} , then

$$H_D(X) \le L(C^*) < H_D(X) + 1$$

Proof. C^* should be better than Shannon code. Also, C^* is a prefix code.

Theorem) The minimum average code length.

If C^* is an optimal prefix code associated with a r.v.'s $\{X_i\}$ on \mathcal{D} , then

$$\frac{1}{n}H_D(X_1^n) \le L_n(C^*) = \mathbb{E}(\frac{1}{n}l^*(X_1^n)) < \frac{1}{n}H_D(X_1^n) + \frac{1}{n}$$

If $\mathcal{X} = \{X_i\}$ is stationary,

$$L_n(C^*) = \mathbb{E}(\frac{1}{n}l^*(X_1^n)) \to H_D(\mathcal{X})$$

Theorem) The comparison of average code length.

If C is a prefix code associated with a r.v.' $X \sim p$ on \mathcal{D} s.t. $l_C(x) = \lceil \log \frac{1}{q(x)} \rceil$ for some pmf q, then

$$H_D(p) + KL(p||q) \le \mathbb{E}_{X \sim p}(l_C(X)) < H_D(p) + KL(p||q) + 1$$

Proof.

$$\mathbb{E}_{X \sim p}(l_C(X)) = \sum p(x) \lceil \log \frac{1}{q(x)} \rceil < \sum p(x) (\log \frac{1}{q(x)} + 1)$$

$$= \sum p(x) (\log \frac{p(x)}{q(x)p(x)} + 1) = H_D(p) + KL(p||q) + 1$$

Similarly, the lower bound can be proven.

4.3 Huffman Coding

Definition) Huffman Coding.

For a r.v. X, Huffman coding $C: ran(X) \to \mathcal{D}^*$ is a code satisfying ...

Lemma) Characterization of Huffman Coding.

For a r.v. X, there exists an optimal prefix code that satisfies

- 1. If $p_i > p_j$, then $l_i < l_j$.
- 2. The two longest codewords have the same length.
- 3. The two longest codewords differ only in the last bit (, and corresponds to the two least likely symbols).

Proof. Consider a corresponding tree. We can improve $\mathbb{E}(l(X))$ by swapping, rearranging and trimming.

Proposition) Properties of Huffman Coding.

(i) Optimal

Proof. By recursion through merging the two longest codewords.

(ii) $H_D(X) \le L(C) < H_D(X) + 1$

4.4 Shannon-Fano-Elias Coding (Alphabetic code)

Definition) Shannon-Fano-Elias coding.

For a r.v. X with pmf p, Shannon-Fano-Elias (S.F.E) coding $C: ran(X) \to \mathcal{D}^*$ is constructed by following steps.

- 1. Define $\bar{F}: ran(X) \to [0,1]: x \mapsto \sum_{a < x} p(a) + \frac{1}{2}p(x)$
- 2. Let l(x) be the integer $\left[\log_2 \frac{1}{p(x)}\right] + 1$
- 3. Let C(x) be the first l(x) most significant bits after the decimal point of the binary expansion of $\bar{F}(x)$ i.e. $\lfloor \bar{F}(x) \rfloor_{l(x)}$.

Proposition) Properties of S.F.E Coding.

(i) Nonsingular

Proof. It is enough to show that
$$\lfloor \bar{F}(a_i) \rfloor_{l(a_i)}$$
 are distinct where $\{a_i\} = ran(X)$. Note that $F(a_i) > \bar{F}(a_i) \geq \lfloor \bar{F}(a_i) \rfloor_{l(a_i)}$. Claim that $\lfloor \bar{F}(a_i) \rfloor_{l(a_i)} > F(a_{i-1})$. Obviously, $\lfloor \bar{F}(a_i) \rfloor_{l(a_i)} \geq \bar{F}(a_i) - \frac{1}{2^{l(a_i)}}$. Also, $\bar{F}(a_i) = F(a_{i-1}) + \frac{1}{2}p(a_i) \geq F(a_{i-1}) + \frac{1}{2^{l(a_i)}}$ since $l(x) = \left\lceil \log_2 \frac{1}{p(x)} \right\rceil + 1$. Therefore, $F(a_i) > \lfloor \bar{F}(a_i) \rfloor_{l(a_i)} > F(a_{i-1})$

- (ii) S.F.E coding is prefix free
- (iii) L(C) < H(X) + 2

Proof.
$$L(C) = \mathbb{E}(l(C(X))) = \sum_{x} p(x)l(x) = \sum_{x} p(x)(\lceil \log_2 \frac{1}{p(x)} \rceil + 1) < H(X) + 2 \quad \Box$$

4.5 Channel Capacity

5 Channel Capacity

Definition) Channel Capacity.

A discrete channel is a system (X, p(Y|X), Y) consisting of an input r.v. X and output r.v. Y, and fixed p(Y|X)

Information of channel capacity is

$$C = \max_{p(X)} I(X;Y)$$

Proposition) Properties of Channel Capacity.

- (i) $C \ge 0$
- (ii) $C \leq \log(|ran(X)|), C \leq \log(|ran(Y)|)$
- (iii) C is concave w.r.t. p(X)

Definition) Symmetric Channel.

A channel is symmetric if the rows and the columns of the transition matrix p(Y|X) are permutations with each other

Proposition) Properties of Symmetric Channel.

(i) $C = \max_{p(X)} I(X;Y) = \max_{p(X)} (H(Y) - H(r)) \le \log |ran(Y)| - H(r)$ where r is a row of the transition matrix.

Definition) Discrete Memoryless channel.

A channel is memoryless if the prob. dist. of the output depends only on the input at the time.

The n-th extension of the discrete memoryless channel (DMC) is $(X_1^n, p(Y_1^n|x_1^n), Y_1^n)$ where $p(Y_k|x_1^k, y_1^{k-1}) = p(Y_k|x_1^k)$

Definition) Jointly typical sequences.

The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x_1^n,y_1^n)\}$ is defined as

$$A_{\epsilon}^{(n)} = \{(x_1^n, y_1^n) \mid \max(|-\frac{1}{n}\log p(x_1^n) - H(X)|, |-\frac{1}{n}\log p(y_1^n) - H(Y)| \\ , |-\frac{1}{n}\log p(x_1^n, y_1^n) - H(X, Y)|) < \epsilon \}$$

where $p(x_1^n, y_1^n) = \prod_{i=1}^n p(x_i, y_i)$

Theorem) Joint AEP.

Let (X_1^n, Y_1^n) be i.i.d. sequences from $p(x_1^n, y_1^n) = \prod_{i=1}^n p(x_i, y_i)$. Then,

- 1. $\mathbb{P}((X_1^n, Y_1^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty$
- 2. $|A_{\epsilon}^{(n)}| < 2^{n(H(X,Y)+\epsilon)}$
- 3. If $(\tilde{X}_1^n, \tilde{Y}_1^n) \sim p(x_1^n)p(y_1^n)$,

$$\mathbb{P}((\tilde{X_1^n}, \tilde{Y_1^n}) \in A_{\epsilon}^{(n)}) \leq 2^{-n(I(X;Y) - 3\epsilon)}$$

For sufficiently large n,

$$\mathbb{P}((\tilde{X_1^n}, \tilde{Y_1^n}) \in A_{\epsilon}^{(n)}) \ge (1 - \epsilon)2^{-n(I(X;Y) + 3\epsilon)}$$

Proof. 1 and 2 are obvious. For 3, $\mathbb{P}((\tilde{X}_1^n, \tilde{Y}_1^n) \in A_{\epsilon}^{(n)}) = \sum_{(\tilde{x}_1^n, \tilde{y}_1^n) \in A_{\epsilon}^{(n)}} p(\tilde{x}_1^n, \tilde{y}_1^n) = \sum_{(\tilde{x}_1^n, \tilde{y}_1^n) \in A_{\epsilon}^{(n)}} p(\tilde{x}_1^n) p(\tilde{y}_1^n)$. By 2, we can bound the number of terms in the summation. By definition of $A_{\epsilon}^{(n)}$, we can bound the each probability term.

Definition) (M,n).

An (M, n) code consists of

- 1. An index set $I = \{1, ..., M\}$.
- 2. An encoding ftn $x_1^n: I \to \Omega_x^n$. This is determined by realizations of r.v. X(w) n times for each $w \in I$. So, $X_1(w), \ldots, X_n(w)$ are i.i.d. r.v.'s. Denote their realization as $x_1(w), \ldots, x_n(w)$. We will determine which realizations define $x_1^n(w)$ in later.
- 3. A DMC $(x_1^n(w), p(Y_1^n|x_1^n(w)), Y_1^n)$. This generates a r.v. Y_1^n for given $x_1^n(w)$.
- 4. A decoding ftn $g: \Omega_y^n \to I$. Since every y_1^n is always generated for given $x_1^n(w)$, a decoding ftn g can acknowledge $x_1^n(w)$. But we omit for the sake of brevity. i.e. g is a ftn of $x_1^n(w)$, as well as y_1^n .

The probability of error at input code $x_1^n(w)$ is

$$\lambda_w(x_1^n(w)) = \mathbb{E}_{Y_1^n \sim p(\cdot | x_1^n)} (I(g(y_1^n) \neq w)) = \mathbb{P}(g(Y_1^n) \neq w | x_1^n(w))$$
$$= \sum_{y_1^n} p(y_1^n | x_1^n(w)) I(g(y_1^n) \neq w)$$

The maximal probability of error at input code x_1^n is

$$\lambda^{(n)}(x_1^n) = \max_{w} \lambda_w(x_1^n(w))$$

The average probability of error at input code x_1^n is

$$P_e^{(n)}(x_1^n) = \mathbb{E}_{W \sim U([2^{nR}])} \lambda_W(x_1^n(W)) = \frac{1}{M} \sum_{w=1}^M \lambda_w(x_1^n(w))$$

The average probability of error is

$$P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)} \lambda_W(X_1^n(W))$$

The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$

A rate R is achievable if there exists sequence of $(\lceil 2^{nR} \rceil, n)$ code s.t. $\lambda^{(n)} \to 0$ as $n \to \infty$. The capacity of a discrete memoryless channel is the supremum of all achievable rates.

Theorem) Channel Coding Theorem.

For every $\delta > 0$, R < C, there exist $(2^{nR}, n)$ code with $P_e^{(n)} < \delta$. Conversely, any sequence of $(2^{nR}, n)$ code with $P_e^{(n)} \to 0$ must have $R \le C$ i.e. $(2^{nR}, n)$ code is achievable iff R < C.

Proof. First, consider i.i.d. r.v.'s $X_1(w), \ldots, X_n(w)$ for each $w \in [2^{nR}] = \{1, \ldots, 2^{nR}\}$ where $p(X_1^n(w))$ maximizes I(X;Y). The number of observation n will be determined later. From the observation, we have a codebook

$$C = \begin{pmatrix} x_1(1) & x_2(1) & \dots & x_n(1) \\ \vdots & \vdots & \dots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \dots & x_n(2^{nR}) \end{pmatrix} = \begin{pmatrix} x_1^n(1) \\ \vdots \\ x_1^n(2^{nR}) \end{pmatrix}$$

Fix $\epsilon > 0$ s.t. $4\epsilon < \delta$ and $R < I(X;Y) - 3\epsilon$ (: R < C). Define $E_w = \{(x_1^n(w), y_1^n) \in A_{\epsilon}^{(n)}\}$ for each $w \in [2^{nR}]$ Define a decoding ftn $g: ran(Y)^n \to I$ by followings.

$$g(y_1^n) = g_{x_1^n}(y_1^n) = \begin{cases} w' & \text{if } \exists! \ w' \in [2^{nR}] \text{ s.t. } (x_1^n(w'), y_1^n) \in E_{w'} \\ 2 & \text{o.w.} \end{cases}$$

Note that the second case is no matter what value you assign. Therefore, the expected number of error (or probability of error) is

$$\begin{split} P_{e}^{(n)} &= \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_{1}^{n}(W)} \mathbb{E}_{Y_{1}^{n} \sim p(\cdot|X_{1}^{n}(W))} (I_{g(Y_{1}^{n}) \neq W}) \\ &= \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_{1}^{n}(W)} \mathbb{P}(g(Y_{1}^{n}) \neq W|X_{1}^{n}(W)) \\ &= \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_{1}^{n}(W)} (\lambda_{W}(X_{1}^{n}(W))) \\ &= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \mathbb{E}_{X_{1}^{n}(w)} (\lambda_{w}(X_{1}^{n}(w))) \\ &= \mathbb{E}_{X_{1}^{n}(1)} \lambda_{1}(X_{1}^{n}(1)) \quad (\because \text{symmetry of code construction}) \\ &= \sum_{x_{1}^{n}(1)} \mathbb{P}(x_{1}^{n}(1)) \lambda_{1}(x_{1}^{n}(1)) \\ &= \sum_{x_{1}^{n}(1)} \mathbb{P}(x_{1}^{n}(1)) \cdot \mathbb{P}(g(Y_{1}^{n}) \neq 1 | x_{1}^{n}(1)) \end{split}$$

By the definition of g,

$$\begin{split} P_e^{(n)} &= \sum_{x_1^n(1)} \mathbb{P}(x_1^n(1)) \cdot \mathbb{P}(g(Y_1^n) \neq 1 | x_1^n(1)) \\ &= \sum_{x_1^n(1)} \mathbb{P}(x_1^n(1)) \cdot \mathbb{P}(\neg (\exists! \ 1 \in [2^{nR}] \ \text{s.t.} \ (x_1^n(1), y_1^n) \in E_1) | x_1^n(1)) \\ &= \sum_{x_1^n(1)} \mathbb{P}(x_1^n(1)) \cdot \mathbb{P}((x_1^n(1), y_1^n) \notin E_1 \vee (x_1^n(1), y_1^n) \in E_2 \vee \dots \vee (x_1^n(1), y_1^n) \in E_{2^{nR}} | x_1^n(1)) \\ &= \mathbb{P}((X_1^n(1), Y_1^n) \notin E_1 \vee (X_1^n(1), Y_1^n) \in E_2 \vee \dots \vee (X_1^n(1), Y_1^n) \in E_{2^{nR}}) \\ &\leq \mathbb{P}_{X_1^n(1), Y_1^n}(E_1^c) + \mathbb{P}_{X_1^n(1), Y_1^n}(E_2) + \dots + \mathbb{P}_{X_1^n(1), Y_1^n}(E_{2^{nR}}) \\ &\leq \epsilon + \mathbb{P}_{X_1^n(1), Y_1^n}(E_2) + \dots + \mathbb{P}_{X_1^n(1), Y_1^n}(E_{2^{nR}}) \quad \text{for sufficiently large } n \\ &\leq \epsilon + 2^{-n(I(X;Y) - 3\epsilon - R)} \quad (\because p_{X_1^n(1)} \perp p_{Y_1^n|X_1^n(w)} \ \forall w \neq 1, \ \text{AEP 3}) \\ &\leq 2\epsilon \quad \text{for sufficiently large } n \text{ since } R < I(X;Y) - 3\epsilon \end{split}$$

Conversely, we need to show that $P_e^{(n)} \to 0$ implies $R \leq C$. First, we show Fano's inequality.

Lemma) Fano's inequality.

For a DMC, assume $W \sim U([2^{nR}])$. Let $P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)} \lambda_W(X_1^n(W))$. Then,

$$H(X_1^n|Y_1^n) \le 1 + P_e^{(n)} nR \tag{3}$$

or,

$$H(W|Y_1^n) \le H(\{P_e^{(n)}, 1 - P_e^{(n)}\}) + P_e^{(n)}\log(|2^{nR}| - 1)$$
(4)

(Note that $H(X_1^n|Y_1^n)$ needs integration w.r.t. $W, X_1^n(W), Y_1^n$))

Proof. Let's start from data processing inequality $H(X_1^n|Y_1^n) \leq H(W|Y_1^n)$ since $W \to X \to Y$. Define $E_{W,Y_1^n} = I(g(Y_1^n) \neq W)$ be a ftn of W and Y_1^n . Note that when we integrate E_{W,Y_1^n} , we sequentially generate $W \sim U(2^{nR})$, $X_1^n(W)$ and $Y_1^n \sim p(\cdot|X_1^n(W))$. Consider

$$H(E_{W,Y_1^n}, W|Y_1^n) = H(W|Y_1^n) + H(E_{W,Y_1^n}|W, Y_1^n) = H(W|Y_1^n) + 0$$

Hence, $H(X_1^n(W)|Y_1^n) \le H(W|Y_1^n) = H(E_{W,Y_1^n}, W|Y_1^n) = H(E_{W,Y_1^n}|Y_1^n) + H(W|E_{W,Y_1^n}, Y_1^n)$. For the first term,

$$H(E_{W,Y_1^n}|Y_1^n) \le H(E_{W,Y_1^n}) \le 1$$
 (: E is a binary r.v..)

For the second term,

$$\begin{split} H(W|E_{W,Y_1^n},Y_1^n) &= \mathbb{E}_{W \sim U([2^{nR}])}(\mathbb{P}(E_{W,Y_1^n} = 0)H(W|Y_1^n,E_{W,Y_1^n} = 0) \\ &+ \mathbb{P}(E_{W,Y_1^n} = 1)H(W|Y_1^n,E_{W,Y_1^n} = 1)) \\ &(\mathbb{P},\ H\ \text{integrate w.r.t.}\ X_1^n,Y_1^n) \\ &\leq 0 + \mathbb{E}_{W \sim U([2^{nR}])}\mathbb{E}_{X_1^n(W)}(\mathbb{P}(g(Y_1^n) \neq W|X_1^n(W)))\log(|ran(W)| - 1) \\ &(\because E_{W,Y_1^n} = 0 \Leftrightarrow W\ \text{is correctly determined by } g(Y_1^n)) \\ &\leq \mathbb{E}_{W \sim U([2^{nR}])}\mathbb{E}_{X_1^n(W)}(\lambda_W(X_1^n(W)))\log(|ran(W)| - 1) \leq P_e^{(n)} \, nR \end{split}$$

Henceforth, $H(X_1^n(W)|Y_1^n) \leq 1 + P_e^{(n)}(x_1^n)nR$ which is (3). For (4), note that

$$\begin{split} H(E_{W,Y_1^n}) &= H(\{\mathbb{P}(E_{W,Y_1^n} = 1), \, \mathbb{P}(E_{W,Y_1^n} = 0)\}) = H(\{\mathbb{P}(g(Y_1^n) \neq W), \, \mathbb{P}(g(Y_1^n) = W)\}) \\ &= H(P_e^{(n)}, 1 - P_e^{(n)}) \end{split}$$

Furthermore, we need following lemma too.

Lemma) For a DMC,.

$$I(X_1^n; Y_1^n) \le nC \tag{5}$$

Proof.

$$\begin{split} I(X_1^n;Y_1^n) &= H(Y_1^n) - H(Y_1^n|X_1^n) \\ &= H(Y_1^n) - \sum_{i=1}^n H(Y_i|Y_1^{i-1},X_1^n) \\ &= H(Y_1^n) - \sum_{i=1}^n H(Y_i|X_i) \quad (\because \text{DMC}) \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) = \sum_{i=1}^n I(X_i;Y_i) \end{split}$$

Now, we can prove the converse.

$$nR = H(W) = H(W|Y_1^n) + I(W;Y_1^n)$$

$$\leq H(W|Y_1^n) + I(X_1^n(W);Y_1^n)$$

$$\leq 1 + P_n^{(e)}nR + I(X_1^n;Y_1^n) \quad (\because (4), W \sim U([2^{nR}]))$$

$$\leq 1 + P_n^{(e)}nR + nC \quad (\because (5))$$

Dividing by n, we have $R \leq \frac{1}{n} + P_e^{(n)}R + C$. Taking $n \to \infty$, we are done.

Corollary) Bounding $\lambda^{(n)}(x_1^n)$ by specific realization.

(i) For every $\delta > 0$, R < C, there exist $(2^{nR}, n)$ code with $\lambda^{(n)}(x_1^n) < \delta$.

Proof. It is enough to show that we can take a codebook $(2^{n(R-1/n)}, n)$ satisfying $\lambda^{(n)}(x_1^n) < \delta$. By channel coding theorem, we have

$$P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)}(\lambda_W(X_1^n(W))) \le 2\epsilon.$$

Then, there exists $x_1^n(w)$ for each $w \in [2^{nR}]$ s.t. $\mathbb{E}_{W \sim U([2^{nR}])} \lambda_1(x_1^n(W)) \leq 2\epsilon$. Therefore, at least the half of w's of $[2^{nR}]$ satisfies $\lambda_w(x_1^n(w)) \leq 4\epsilon$. So we are done.

Theorem) Zero-error codes.

 $P_e^{(n)} = 0$ implies R < C.

Proof. $nR = H(W) = H(W|Y_1^n) + I(W;Y_1^n) = I(W;Y_1^n)$ since $P_e^{(n)} = 0$ implies W can be restored by $g(y_1^n(X_1^n(W)))$ for all $X_1^n(W)$. Data processing inequality implies that $I(W;Y_1^n) \leq I(X_1^n;Y_1^n)$. Finally, $I(X_1^n;Y_1^n) = \sum_{i=1}^n I(X_i;Y_i) \leq nC$.

Definition) Feedback capacity.

 $(2^{nR}, n)$ feedback code is a sequence of mappings $x_i(W, Y_1^{i-1})$.

The capacity with feedback, C_{FB} , of a DMC is a supremum of all rates achievable by feedback codes.

Theorem) $C_{FB} = C = \max_X I(X; Y)$.

Proof. Clearly, $C_{FB} \geq C$. To show that $C_{FB} \leq C$, let's start from $H(W) = H(W|Y_1^n) + I(W;Y_1^n)$. Bound $I(W;Y_1^n)$ as follows.

$$I(W; Y_1^n) = H(Y_1^n) - H(Y_1^n|W)$$

$$= H(Y_1^n) - \sum_{i=1}^n H(Y_i|Y_1^{i-1}, W)$$

$$= H(Y_1^n) - \sum_{i=1}^n H(Y_i|Y_1^{i-1}, X_i, W) \quad (\because X_i \text{ is a ftn of } Y_1^{i-1}, W)$$

$$= H(Y_1^n) - \sum_{i=1}^n H(Y_i|X_i)$$

$$\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) = \sum_{i=1}^n I(X_i; Y_i)$$

$$\leq nC$$

Together with (3), $H(W) \leq 1 + P_e^{(n)} nR + nC$. Dividing by n and letting $n \to \infty$ give $R \leq C$. Taking supremum of R, we have $C_{FB} \leq C$.

Theorem) Joint source-channel coding theorem.

 V_1^n is a finite alphabet stochastic process $\mathcal V$ s.t. $V_1^n \in A_{\epsilon}^{(n)}$, $H(\mathcal V) < C$. Then there exists source-channel code s.t. $\mathbb P(\hat V_1^n \neq V_1^n) \to 0$ a.s.. Conversely, for any stationary stochastic process $\mathcal V$ with $H(\mathcal V) > C$, the probability of error is bounded away from zero.

Proof. Take $\epsilon > 0$ s.t. $H(\mathcal{V}) + \epsilon < C$. From AEP, we have $|A_{\epsilon}^{(n)}| \leq 2^{n(H(\mathcal{V}) + \epsilon)}$. So, we can index them with $n(H(\mathcal{V}) + \epsilon)$ bits. From channel coding theorem, we can reliably transmit

the indices since $H(\mathcal{V}) + \epsilon = R < C$ with the arbitrary small probability of error. Conversely, we need to show that $\mathbb{P}(\hat{V}_1^n \neq V_1^n) \to 0$ a.s. implies $H(\mathcal{V}) < C$. Note that

$$H(\mathcal{V}) \approx \frac{H(\mathcal{V}_{1}^{n})}{n} \qquad (\because \text{def})$$

$$= \frac{1}{n} (H(\mathcal{V}_{1}^{n}|\hat{\mathcal{V}}_{1}^{n}) + I(\mathcal{V}_{1}^{n};\hat{\mathcal{V}}_{1}^{n}))$$

$$\leq \frac{1}{n} (1 + \mathbb{P}(\mathcal{V}_{1}^{n} \neq \hat{\mathcal{V}}_{1}^{n}) n \log |\mathcal{V}| + I(\mathcal{V}_{1}^{n};\hat{\mathcal{V}}_{1}^{n}))$$

$$\leq \frac{1}{n} (1 + \mathbb{P}(\mathcal{V}_{1}^{n} \neq \hat{\mathcal{V}}_{1}^{n}) n \log |\mathcal{V}| + I(\mathcal{X}_{1}^{n};\mathcal{Y}_{1}^{n})) \qquad (\because \text{data processing inequality})$$

$$= \frac{1}{n} + \mathbb{P}(\mathcal{V}_{1}^{n} \neq \hat{\mathcal{V}}_{1}^{n}) \log |\mathcal{V}| + C \qquad (\because \text{Memoryless DMC})$$

letting $n \to \infty$, we are done.

6 Differential Entropy

Now we are assume that all r.v.'s are continuous, i.e. $F(x) = \mathbb{P}(X \leq x)$ is continuous.

6.1 Differential Entropy, Relative Entropy, Conditional Entropy, Mutual Information

Definition) Differential Entropy.

X : r.v. with the pdf p(x)

$$h(X) = -\int_{S} p(x) \ln p(x) dx = \mathbb{E}_{X}(\ln \frac{1}{p(X)}; S)$$

where $S = \{x \mid p(x) > 0\}$ is the support set of X.

Comparing to discrete entropy (bits), differential entropy uses natural log (nats), i.e. ln.

Exercise) Few examples.

- a) $X \sim U([a, b]) \Rightarrow h(X) = \ln(b a)$. Note that if b - a < 1, h(X) < 0
- b) $X \sim \mathcal{N}(0, \sigma^2) \implies h(X) = \mathbb{E}_X(\frac{1}{2} \ln 2\pi \sigma^2 + \frac{1}{2\sigma^2} X^2)) = \frac{1}{2} \ln 2\pi e \sigma^2$.

Proposition) Properties of Differential Entropy.

- (i) Shift invariant: h(X) = h(X + a) for $a \in \mathbb{R}$.
- (ii) $h(aX) = h(X) + \log|a|$

Proof.
$$p_{aX}(y) = \frac{1}{|a|} p_x(\frac{y}{a})$$

(iii) $h(AX) = h(X) + \log |A|$ where A is a linear map and |A| = detA

6.2 AEP for continuous r.v.

Theorem) (AEP).

 X_i : i.i.d. r.v.'s with pdf p

$$-\frac{1}{n}\ln p(X_1,\dots,X_n)\to h(X)=\mathbb{E}_X(-\ln p(X))\quad \text{a.s.}$$

Definition) Typical set.

The typical set $A_{\epsilon}^{(n)}$ is

$$A_{\epsilon}^{(n)} = \{(x_1, \dots, x_n) \in S^n : |-\frac{1}{n} \ln p(x_1, \dots, x_n) - h(X)| < \epsilon\}$$

Define a Vol(A) as

$$Vol(A) = \int_A dx_1 \cdots dx_n$$

Proposition) Properties of Typical sets.

- (i) $\mathbb{P}(X \in A_{\epsilon}^{(n)}) \ge 1 \epsilon$ for sufficiently large n.
- (ii) $Vol(A_{\epsilon}^{(n)}) < 2^{n(H(X)+\epsilon)}$

Proof.

$$\begin{split} 1 &= \int_{S^n} p(x_1^n) dx_1^n \geq \int_{A_{\epsilon}^{(n)}} p(x_1^n) dx_1^n \geq \int_{A_{\epsilon}^{(n)}} 2^{-n(H(X) + \epsilon)} dx_1^n \\ &= Vol(A_{\epsilon}^{(n)}) 2^{-n(H(X) + \epsilon)} \end{split}$$

(iii) $Vol(A_{\epsilon}^{(n)}) \ge (1 - \epsilon)2^{n(H(X) - \epsilon)}$ for sufficiently large n

Proof.
$$1 - \epsilon < \mathbb{P}(X_1^n \in A_{\epsilon}^{(n)}) = \int_{A_{\epsilon}^{(n)}} p(x_1^n) dx_1^n \le Vol(A_{\epsilon}^{(n)}) 2^{-n(H(X) - \epsilon)}$$
 for sufficiently large n

Theorem) Relation to Discrete Entropy (Quantization).

Define $X^{\Delta} = \sum_{i} \Delta i I_{\Delta i \leq X < \Delta(i+1)}$.

If p(x) is Riemann-integrable, then

$$H(X^{\Delta}) + \log \Delta \to h(X)$$
 as $\Delta \to 0$.

Proof. $H(X^{\Delta}) = -\sum \mathbb{P}(X^{\Delta} = \Delta i) \log \mathbb{P}(X^{\Delta} = \Delta i)$. MVT implies that there exists x_i s.t. $\mathbb{P}(X^{\Delta} = \Delta i) = \mathbb{E}(I_{\Delta i \leq X < \Delta(i+1)}) = p(x_i)\Delta$. Therefore,

$$\begin{split} H(X^{\Delta}) &= -\sum \mathbb{P}(X^{\Delta} = \Delta i) \log \mathbb{P}(X^{\Delta} = \Delta i) \\ &= -\sum (p(x_i)\Delta) \log(p(x_i)\Delta) = -\sum (p(x_i)\Delta) \log p(x_i) - \log \Delta \sum p(x_i)\Delta \\ &= -\sum (p(x_i)\Delta) \log p(x_i) - \log \Delta \rightarrow h(X) - \log \Delta \ (bits) \end{split}$$

Definition) Joint differential entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$h(X,Y) = \mathbb{E}_{X,Y}(\ln \frac{1}{p(X,Y)})$$

Exercise) Multivariate normal distribution..

a) $X \sim \mathcal{N}(\mu, \Sigma)$

$$h(X) = \mathbb{E}_X(\frac{1}{2}\ln(2\pi)^n|\Sigma| + \frac{1}{2}(X-\mu)^t\Sigma^{-1}(X-\mu))$$

= $\frac{1}{2}\ln(2\pi)^n|\Sigma| + \frac{1}{2}tr(\mathbb{E}_X(\Sigma^{-1}(X-\mu)^t(X-\mu)))$
= $\frac{1}{2}\ln(2\pi)^n|\Sigma| + n \ (nats)$

Proposition) Properties of Joint Differential Entropy.

(i) If X, Y are independent, h(X, Y) = h(X) + h(Y)

Definition) Conditional Differential Entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$H(Y|X) = \mathbb{E}_{X,Y}(\ln \frac{1}{p(Y|X)})$$

Proposition) Properties of Conditional Differential Entropy.

- (i) Chain rule: $h(X_1, ..., X_n) = \sum_{i=1}^n h(X_i | X_1^{i-1})$
- (ii) Conditioning reduces entropy: $h(X_1, \ldots, X_n) \leq \sum_{i=1}^n h(X_i)$. The equality holds when X_1, \ldots, X_n are indep.

Theorem) Hadamard Inequality.

K: p.s.d. matrix. Then,

$$|K| \le \prod_{i=1}^{n} K_{ii}$$

Proof. Let $X \sim \mathcal{N}(0, K)$. From the above 2nd proposition,

$$\frac{1}{2}\ln(2\pi e)^n|K| \le \sum_{i=1}^n \frac{1}{2}\ln(2\pi e)K_{ii} = \frac{1}{2}\ln[(2\pi e)^n\prod_{i=1}^n K_{ii}]$$

Definition) Differential Relative Entropy (Kullback Leibler distance).

For pdfs p(x), q(x),

$$D(p||q) = \mathbb{E}_{X \sim p}(\ln \frac{p(X)}{q(X)})$$

Proposition) Properties of Differential Relative Entropy.

(i) $D(p||q) \ge 0$. The equality holds when p = q w.p. 1.

Theorem) Normal distribution maximizes entropy.

Let $X \in \mathbb{R}^n$ be a r.v. with $\mathbb{E}(X) = 0$, $\mathbb{E}(XX^t) = K$. Then,

$$h(X) \le \frac{1}{2} \ln(2\pi e)^n |K|$$

where equality holds when $X \sim \mathcal{N}(0, K)$

Proof. Let $Y \sim \mathcal{N}(0, K)$. Then,

$$0 \le D(X||Y) = -h(X) + \mathbb{E}_X(-\log \mathcal{N}(X; 0, K))$$
$$= -h(X) + \frac{1}{2}\ln(2\pi e)^n |K|$$

Definition) Differential Mutual Information.

X, Y : r.v.'s. with the joint pdf p(x, y).

$$I(X;Y) = D(p(x,y)||p_X(x)p_y(y)) = \mathbb{E}_{X,Y \sim p}(\log(\frac{p(X,Y)}{p(X)p(Y)}))$$

= $h(X) - h(X|Y)$

Unlike differential entropy, the mutual information of continuous r.v. is the same as that of quantized r.v..

Proposition) Properties of Mutual Information.

- (i) $I(X;Y) \ge 0$.
- (ii) I(X;Y) = 0 iff X, Y are indep.

7 Gaussian Channel

7.1 Gaussian Channel

Definition) Gaussian channel.

 $Y_i = X_i + Z_i, \ Z_i \overset{i.i.d.}{\sim} \mathcal{N}(0, N)$ where $Z_i, \ X_i$ are independent and $\frac{1}{n} \sum_{i=1}^n x_i^2 \leq P$

Proposition) Probability of error.

(i) Probability of error for binary transmission $X = \pm \sqrt{P} \ w.p.\frac{1}{2}$.

$$P_e = \mathbb{E}_X(I(XY < 0)) = \frac{1}{2}(\mathbb{P}(Y < 0|X = \sqrt{P}) + \mathbb{P}(Y > 0|X = -\sqrt{P}))$$

= $\mathbb{P}(Z > \sqrt{P})$

Definition) Information capacity.

The information capacity with power constraint is

$$C = \max_{p(x): EX^2 \le P} I(X;Y)$$

Proposition) Gaussian channel capacity.

(i) The information capacity of Gaussian Channel is

$$\frac{1}{2}\log(1+\frac{P}{N})$$
 where $X \sim \mathcal{N}(0,P)$

Proof.
$$I(X;Y) = h(Y) - h(Y|X) = h(Y) - h(Z|X) = h(Y) - h(Z)$$
. Note that $\mathbb{E}(Y^2) = \mathbb{E}(X^2) + \mathbb{E}(Z^2) \le P + N$. Therefore, $h(Y) \le \frac{1}{2} \log 2\pi e(P + N)$. We are done.

Definition) (M,n) with power constraint.

An (M, n) code with power constraint consists of

- 1. An index set $I = \{1, ..., M\}$.
- 2. An encoding ftn $x_1^n: I \to \Omega_x^n$ with power constraint of $\sum_{i=1}^n x_i^2(w) \le nP \quad \forall w \in I$
- 3. A DMC $(x_1^n(w), p(Y_1^n|x_1^n(w)), Y_1^n)$. This generates a r.v. Y_1^n for given $x_1^n(w)$.
- 4. A decoding ftn $g: \Omega_y^n \to I$.

Theorem) Gaussian capacity.

For every $\delta > 0$, $R < C = \frac{1}{2}\log(1 + \frac{P}{N})$, there exist $(2^{nR}, n)$ code with $P_e^{(n)} < \delta$. Conversely, any sequence of $(2^{nR}, n)$ code with $P_e^{(n)} \to 0$ must have $R \le C = \frac{1}{2}\log(1 + \frac{P}{N})$

i.e. $(2^{nR}, n)$ code is achievable iff $R \leq C$.

Proof. Fix $\epsilon > 0$ s.t. $4\epsilon < \delta$ and $R < I(X;Y) - 3\epsilon$ (: R < C). Generate $X_i(w) \sim \mathcal{N}(0,P-\epsilon) \quad \forall w \in [2^{nR}]$. Define $E_w = \{(x_1^n(w),y_1^n) \in A_\epsilon^{(n)}\}$ for each $w \in [2^{nR}]$, $F_w = \{\frac{1}{n}\sum_{i=1}^n x_i(w) > P\}$. Define a decoding ftn $g: ran(Y)^n \to I$ by followings.

$$g(y_1^n) = g_{x_1^n}(y_1^n) = \begin{cases} w' & \text{if } \exists! \ w' \in [2^{nR}] \text{ s.t. } (x_1^n(w'), y_1^n) \in E_{w'} \land x_1^n(w') \in F_{w'} \\ 2 & \text{o.w.} \end{cases}$$

Note that the second case is no matter what value you assign. Similar to channel coding theorem, the expected number of error (or probability of error) is

$$P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)} \mathbb{E}_{Y_1^n \sim p(\cdot \mid x_1^n(W))} (I_{g(Y_1^n) \neq W}) = \int_{x_1^n(1)} \mathbb{P}(g(Y_1^n) \neq 1 \mid x_1^n(1)) d\mathbb{P}(x_1^n(1))$$

By the definition of g,

$$\begin{split} P_e^{(n)} &= \int_{x_1^n(1)} \mathbb{P}(g(Y_1^n) \neq 1 | x_1^n(1)) d\mathbb{P}(x_1^n(1)) \\ &\leq \mathbb{P}(X_1^n(1) \in F_1) + \mathbb{P}(X_1^n(1) \in E_1^c) + \mathbb{P}(X_1^n(1) \in E_2) + \dots + \mathbb{P}(X_1^n(1) \in E_{2^{nR}}) \\ &\leq \epsilon + \epsilon + (2^{nR} - 1)2^{-n(I(X;Y) - 3\epsilon} \quad (\because X_i(1) \sim \mathcal{N}(0, P - \epsilon)) \\ &\leq 2\epsilon + 2^{-n(I(X;Y) - 3\epsilon - R)} \quad \text{for sufficiently large } n \\ &\leq 3\epsilon \quad \text{for sufficiently large } n \text{ since } R < I(X;Y) - 3\epsilon \end{split}$$

Conversely, we need to show that $P_e^{(n)} \to 0$ implies $R \leq C$. Now, we can prove the converse.

$$\begin{split} R &= \frac{1}{n} H(W) = \frac{1}{n} (H(W|Y_1^n) + I(W;Y_1^n)) \\ &\leq \frac{1}{n} (H(W|Y_1^n) + I(X_1^n(W);Y_1^n)) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} I(X_1^n;Y_1^n) \quad (\because (4), \ W \sim U([2^{nR}])) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} \sum_{i=1}^n h(Y_i) - h(Z_i) \quad (\because \text{the last line of proof of } (5), \ Y_i = X_i + Z_i) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} \sum_{i=1}^n [\frac{1}{2} \log(2\pi e(P_i + N)) - \frac{1}{2} \log(2\pi eN)] \quad \text{where } P_i = \mathbb{E}_{w \sim U([2^{nR}])} x_i^2(w) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} \sum_{i=1}^n \frac{1}{2} \log \frac{P_i + N}{N} \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(\frac{1}{n} \sum_{i=1}^n \frac{P_i + N}{N}) \quad (\because \text{Jensen's inequality}) \end{split}$$

Note that
$$\sum_{i=1}^{n} \frac{P_i}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{w \sim U([2^{nR}])} x_i^2(w) = \mathbb{E}_{w \sim U([2^{nR}])} \frac{1}{n} \sum_{i=1}^{n} x_i^2(w) \le P$$

$$R \le \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(\frac{1}{n} \sum_{i=1}^{n} \frac{P_i + N}{N})$$

$$\le \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(1 + \frac{1}{N} \sum_{i=1}^{n} \frac{P_i}{n})$$

$$\le \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(1 + \frac{P}{N})$$

Taking $n \to \infty$, we are done.

7.2 Parallel gaussian channel

Definition) Parallel Gaussian channel.

 $Y_i = X_i + Z_i, \ Z_i \sim \mathcal{N}(0, N_i)$ where $Z_i, \ X_i$ are independent and $\sum_{i=1}^n x_i^2 \leq P$

Proposition) Parallel gaussian channel capacity.

(i) The information capacity of parallel Gaussian Channel is

$$C = \max_{\sum EX_{i}^{2} \le P} I(X_{1}^{n}; Y_{1}^{n}) = \sum \frac{1}{2} [\log(\frac{\nu}{N_{i}})]^{+} \text{ where } \nu \text{ satisfies } \sum (\nu - N_{i})^{+} = P$$

Proof.

$$\begin{split} I(X_1^n; Y_1^n) &= h(Y_1^n) - h(Y_1^n | X_1^n) = h(Y_1^n) - h(Z_1^n) \\ &= h(Y_1^n) - \sum h(Z_i) \\ &= \sum h(Y_i) - h(Z_i) \\ &\leq \sum \frac{1}{2} \log 2\pi e(P_i + N_i) - \frac{1}{2} \log 2\pi e(N_i) \quad \text{where } P_i = EX_i^2 \\ &= \sum \frac{1}{2} \log(1 + \frac{P_i}{N_i}) \end{split}$$

So, we need to optimize followings

Maximize
$$\sum \frac{1}{2} \log(1 + \frac{P_i}{N_i})$$

subject to $\sum P_i \le P, P_i \ge 0$

Consider $J = \sum_{i=1}^{\infty} \frac{1}{2} \log(1 + \frac{P_i}{N_i}) - \frac{1}{2\nu} (\sum_{i=1}^{\infty} P_i)$. We have $\frac{\partial J}{\partial P_i} = \frac{1}{2} \frac{1}{P_i + N_i} - \frac{1}{2\nu} = 0$. Hence, $P_i = (\nu - N_i)^+ \ge 0$ must satisfy $\sum_{i=1}^{\infty} P_i = P$. To sum up, we first find ν s.t. $\sum_{i=1}^{\infty} (\nu - N_i)^+ = P$. Then,

$$C = \sum_{i=1}^{\infty} \frac{1}{2} [\log(\frac{\nu}{N_i})]^+$$

7.3 Correlated gaussian noise channel

Definition) Correlated (colored) gaussian channel.

$$Y_i = X_i + Z_i, \ X_1^n \sim \mathcal{N}(0, K_X), \ Z_1^n \sim \mathcal{N}(0, K_Z) \text{ where } Z_1^n \perp X_1^n \text{ and } \frac{1}{n} \sum_{i=1}^n x_i^2 \leq P$$

Proposition) Colored gaussian channel capacity.

(i) The information capacity of Colored Gaussian Channel is

$$C = \max_{\frac{1}{n} tr(K_X) \le P} I(X_1^n; Y_1^n) = \sum_{i=1}^{n} \frac{1}{2} [\log(\frac{\nu}{\lambda_i})]^{+1}$$

where λ_i 's are eigenvalues of K_Z , ν satisfies $\sum_{i=1}^n (\nu - \lambda_i)^+ = nP$.

Proof. Note that $\frac{1}{n}\sum_{i=1}^n x_i^2 = \frac{1}{n}tr(x_1^n t_1^n x_1^n)$. So, power constraint is $\frac{1}{n}tr(K_X) \leq P$.

$$I(X_1^n; Y_1^n) = h(Y_1^n) - h(Y_1^n | X_1^n) = h(Y_1^n) - h(Z_1^n)$$

$$= h(Y_1^n) - \sum_i h(Z_i)$$

$$= \frac{1}{2} \log(2\pi e)^n (|K_X + K_Z|) - \frac{1}{2} \log(2\pi e)^n |K_Z|$$

$$= \sum_i \frac{1}{2} \log \frac{|K_X + K_Z|}{|K_Z|}$$

So, we need to optimize followings

Maximize
$$\sum \frac{1}{2} \log \frac{|K_X + K_Z|}{|K_Z|}$$

subject to $K_X \ge 0$, $\frac{1}{n} tr(K_X) \le P$

Since K_Z is p.s.d., we have $K_Z = QD_ZQ^t$ where $D_Z = diag(\operatorname{eig}(K_Z)) = diag(\lambda_1, \ldots, \lambda_n)$ and Q is orthogonal. Then $\frac{1}{2}\log\frac{|K_X+K_Z|}{|K_Z|} = \frac{1}{2}\log\frac{|Q^tK_XQ+D_Z|}{|D_Z|}$. Let $A = Q^tK_XQ$. So, equivalently,

Maximize
$$\sum \frac{1}{2} \log \frac{|A + D_Z|}{|D_Z|}$$

subject to $A \ge 0$, $\frac{1}{n} tr(A) \le P$

Hadamard inequality implies that $|A+D_Z| \leq \prod_i |A_{ii}+\lambda_i|$ while equality holds when A is diagonal. From the constraint, $\frac{1}{n}tr(A) = \sum_i A_{ii} \leq P$. So, it is reformulated as independent parallel channel. Therefore, we first find ν s.t. $\sum_{i=1}^n (\nu - \lambda_i)^+ = nP$. Then,

$$C = \sum_{i=1}^{\infty} \frac{1}{2} [\log(\frac{\nu}{\lambda_i})]^{+1}$$

7.4 Stationary colored gaussian noise channel

Definition) Toeplitz matrix.

Toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal from left to right is constant.

Exercise) A few examples.

a) $\mathcal{X} = \{X_i\}$ is a stationary process, then $Var(X_1^n)$ is a Toeplitz matrix

Theorem) Toeplitz distribution theorem.

Given continuous $g: \mathbb{R} \to \mathbb{R}$, Toeplitz matrix

$$K_n = \begin{pmatrix} R(0) & R(1) & R(2) & \cdots & R(n-1) \\ R(1) & R(0) & R(1) & \cdots & R(n-2) \\ R(2) & R(1) & R(0) & \cdots & R(n-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R(n-1) & R(n-2) & R(n-3) & \cdots & R(0) \end{pmatrix}$$

with eigenvalues $\lambda_1^{(n)}, \ldots, \lambda_n^{(n)}$, let $N(f) = \sum_n R(n)e^{j2\pi fn}$ $(\theta = 2\pi f)$ where $\sqrt{-1} = j$. Then,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} g(\lambda_i^{(n)}) = \int_{1/2}^{1/2} g(N(f)) df$$

Proof. Briefly...Check that $\nu = \begin{pmatrix} e^{j2\pi f \cdot 0} \\ \vdots \\ e^{j2\pi f \cdot (n-1)} \end{pmatrix}$ satisfies $K_n \nu = \lambda \nu$. Then, we have $\lambda_i^{(n)} \to N(f)$ as $n \to \infty$.

Corollary) Revisit colored Gaussian channel capacity.

(i) For stationary Z, the information capacity of Colored Gaussian Channel is

$$C = \max_{\frac{1}{n}tr(K_X) \le P} I(X_1^n; Y_1^n) = \frac{1}{2} \int_{1/2}^{1/2} \log(1 + \frac{(\nu - N(f))^+}{N(f)}) df$$

where λ_i 's are eigenvalues of K_Z , $N(f) = \sum K_Z(n)e^{j2\pi fn}$,

$$\nu$$
 satisfies $\sum (\nu - \lambda_i)^+ = P$.

The power constraint becomes $\int_{1/2}^{1/2} (\nu - N(f))^+ df = P$

Proof.

$$C = \max_{\frac{1}{n}tr(K_X) \le P} I(X_1^n; Y_1^n) = \sum_{i=1}^{n} \frac{1}{2} [\log(\frac{\nu}{\lambda_i})]^+ = \sum_{i=1}^{n} \frac{1}{2} \log(1 + \frac{(\nu - \lambda_i)^+}{\lambda_i})$$

where λ_i 's are eigenvalues of K_Z , ν satisfies $\sum (\nu - \lambda_i)^+ = P$.

By the above theorem, $\sum \frac{1}{2} \log(1 + \frac{(\nu - \lambda_i)^+}{\lambda_i}) = \frac{1}{2} \int_{1/2}^{1/2} \log(1 + \frac{(\nu - N(f))^+}{N(f)}) df$ where $N(f) = \sum_n K_Z(n) e^{j2\pi f n}$. The power constraint becomes $\int_{1/2}^{1/2} (\nu - N(f))^+ df = P$.

7.5 Correlated gaussian channel with feedback

Definition) Correlated gaussian channel with feedback.

 $Y_i = X_i + Z_i, \ X_1^n \sim \mathcal{N}(0, K_X), \ Z_1^n \sim \mathcal{N}(0, K_Z)$ where $\frac{1}{n} \sum x_i^2(w, Y_1^{i-1}) \leq P$ $(2^{nR}, n)$ feedback code for the correlated gaussian channel is a sequence of mappings $x_i(W, Y_1^{i-1})$ where $\mathbb{E}(\frac{1}{n} \sum x_i^2(w, Y_1^{i-1})) \leq P$

Proposition) Correlated gaussian channel with feedback capacity.

(i) Feedback capacity of correlated gaussian channel per transmission $\left(=\frac{1}{n}\right)$ is

$$C_{FB,n} = \frac{1}{n} \max_{\frac{1}{n} tr(K_X) \le P} I(X_1^n; Y_1^n) = \max_{\frac{1}{n} tr(K_X) \le P} \frac{1}{2n} \log \frac{|K_{X+Z}|}{|K_Z|}$$

Proof.

$$\begin{split} I(X_1^n; Y_1^n) &= h(Y_1^n) - h(Y_1^n | X_1^n) = h(Y_1^n) - h(Z_1^n) \\ &= h(Y_1^n) - \sum_i h(Z_i) \\ &\leq \frac{1}{2} \log(2\pi e)^n (|K_{X+Z}|) - \frac{1}{2} \log(2\pi e)^n |K_Z| \\ &= \frac{1}{2} \log \frac{|K_{X+Z}|}{|K_Z|} \end{split}$$

where power constraint is $\frac{1}{n}tr(K_X) \leq P$.

(ii) R with $P_e^{(n)} \to 0$ satisfies

$$R \le \frac{1}{2n} \log \frac{|K_Y|}{|K_Z|} + \epsilon_n$$

where $\epsilon_n \to 0$

Proof. By (3), we have $H(W|Y_1^n) \leq 1 + nRP_e^{(n)} = n\epsilon_n$ where $\epsilon_n = \frac{1}{n} + RP_e^{(n)} \to 0$.

Then,

$$\begin{split} nR &= H(W) \\ &= I(W; Y_1^n) + H(W|Y_1^n) \\ &\leq I(W; Y_1^n) + n\epsilon_n \\ &= \sum_i I(W; Y_i|Y_1^{i-1}) + n\epsilon_n \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Y_i|Y_1^{i-1}, W)) + n\epsilon_n \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Y_i|Y_1^{i-1}, W, X_1^i)) + n\epsilon_n \quad (\because X_1^i : \text{ ftn of } Y_1^{i-1}, W) \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Y_i|X_1^{i-1}, Y_1^{i-1}, Z_1^{i-1}, W, X_i)) + n\epsilon_n \quad (\because \text{ similarly}) \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Z_i|X_1^{i-1}, Y_1^{i-1}, Z_1^{i-1}, W, X_i)) + n\epsilon_n \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Z_i|Z_1^{i-1}) + n\epsilon_n \quad (\because Z : \text{ stationary}) \\ &= h(Y_1^n) - h(Z_1^n) + n\epsilon_n \\ &= \frac{1}{2} \log \frac{|K_Y|}{|K_Z|} + n\epsilon_n \end{split}$$

We are done. \Box

(iii) The information capacity of correlated gaussian channel with feedback per transmission $(=\frac{1}{n})$ can be bounded above as

$$C_{FB,n} \le C_n + \frac{1}{2}$$

where C_n is a correlated gaussian channel capacity per transmission.

Proof. We need a following lemma.

Lemma) Determinant preserves order on p.s.d. cone.

For $A \geq 0$, $B \geq 0$, $A - B \geq 0$, we have

$$|A| \ge |B|$$

Proof. For independent two r.v.'s $X \sim \mathcal{N}(0,B)$, $Y \sim \mathcal{N}(0,A-B)$, consider h(X+Y). Then, we have $h(X+Y) \geq h(X+Y|Y) = h(X|Y)$. Hence, $\frac{1}{2}\log((2\pi e)^n|A|) \geq \frac{1}{2}\log((2\pi e)^n|B|)$.

Now we can prove (ii). From (i), we have

$$I(X_1^n; Y_1^n) \le \sum \frac{1}{2} \log \frac{|K_{X+Z}|}{|K_Z|}$$

Since $2(K_X + K_Z) - K_{X+Z} = K_{X-Z} \ge 0$, the above lemma implies $|K_{X+Z}| \le |2(K_X + K_Z)| = 2^n |K_X + K_Z|$. Therefore,

$$I(X_1^n; Y_1^n) \le \frac{1}{2} \log \frac{|K_{X+Z}|}{|K_Z|}$$

$$\le \frac{1}{2} \log \frac{2^n |K_X + K_Z|}{|K_Z|}$$

$$\le \frac{1}{2} \log \frac{|K_X + K_Z|}{|K_Z|} + \frac{n}{2}$$

$$\le nC_n + \frac{n}{2}$$

We are done.

Definition) Causally related.

Random vector X_1^n is causally related to Z_1^n iff

$$p(x_1^n, z_1^n) = p(z_1^n) \prod_{i=1}^n p(x_i | x_1^{i-1}, z_1^{i-1})$$

Reflection) A few properties of causally related random vector.

(i) The most general causal dependence of X_1^n on Y_1^n is

$$X = BZ + V$$
 (V depends on W)

where B is strictly lower triangular.

(ii) Causally related channel capacity is

$$C_{FB,n} = \max_{1 \le tr(BK_ZB^t + K_V) \le P} \frac{1}{2n} \log \frac{|(B+I)K_Z(B+I)^t + K_V|}{|K_Z|}$$

Proof. From the above proposition (i),

Proposition) sharp bound for capacity.

(i) The information capacity of correlated gaussian channel with feedback per transmission can be bounded above as

$$C_{FBn} < 2C_n$$

where C_n is a correlated gaussian channel capacity per transmission.

Proof. We need following lemmas.

Lemma) Determinant is log-concave on p.s.d. cone.

For $A \geq 0$, $B \geq 0$, $\lambda \in [0, 1]$, we have

$$|\lambda A + (1 - \lambda)B| \ge |A|^{\lambda}|B|^{1 - \lambda} \tag{6}$$

Proof. For independent r.v.'s $X \sim \mathcal{N}(0,A)$, $Y \sim \mathcal{N}(0,B)$, $Z \sim Ber(\lambda)$, consider W = ZX + (1-Z)Y. Note that $Var(W) = \mathbb{E}(W^2) = \lambda A + (1-\lambda)B$. Then

$$\frac{1}{2}\log(2\pi e)^{n}|\lambda A + (1-\lambda)B| \ge h(W)$$

$$\ge h(W|Z)$$

$$\ge \lambda h(X) + (1-\lambda)h(Y)$$

$$= \frac{1}{2}\log(2\pi e)^{n}|A|^{\lambda}|B|^{1-\lambda}$$

Lemma) Entropy and variance of causally related random process.

If X_1^n and Z_1^n re causally related, then

$$h(X_1^n - Z_1^n) \ge h(Z_1^n) \tag{7}$$

and

$$|K_{X-Z}| \ge |K_Z| \tag{8}$$

Proof.

$$h(X_1^n - Z_1^n) = \sum_{i=1}^n h(X_i - Z_i | X_1^{i-1} - Z_1^{i-1})$$

$$\geq \sum_{i=1}^n h(X_i - Z_i | X_1^i, Z_1^{i-1}) \quad (\because \text{ Conditioning reduces entropy})$$

$$= \sum_{i=1}^n h(Z_i | X_1^i, Z_1^{i-1})$$

$$= \sum_{i=1}^n h(Z_i | Z_1^{i-1})$$

$$= h(Z_1^n)$$

First, taking a supremum w.r.t. $X_1^n - Z_1^n$ gives $\frac{1}{2} \log(2\pi e)^n |K_{X-Z}| \ge h(Z_1^n)$. Then, taking a supremum w.r.t. Z_1^n gives $|K_{X-Z}| \ge |K_Z|$.

Now we can prove (i).

$$C_{n} = \frac{1}{2n} \log \frac{|K_{X} + K_{Z}|}{|K_{Z}|} = \frac{1}{2n} \log \frac{|\frac{1}{2}K_{X+Z} + \frac{1}{2}K_{X-Z}|}{|K_{Z}|}$$

$$\geq \frac{1}{2n} \log \frac{|K_{X+Z}|^{\frac{1}{2}}|K_{X-Z}|^{\frac{1}{2}}}{|K_{Z}|} \quad (\because (6))$$

$$\geq \frac{1}{2n} \log \frac{|K_{X+Z}|^{\frac{1}{2}}|K_{Z}|^{\frac{1}{2}}}{|K_{Z}|} \quad (\because (8))$$

$$= \frac{1}{2} \frac{1}{2n} \log \frac{|K_{X+Z}|}{|K_{Z}|}$$

$$\geq \frac{1}{2} C_{FB,n}$$

7.6 Multiple-Input Multiple-Output (MIMO)

Definition) Multiple-Input Multiple-Output (MIMO).

$$y = Hx + n$$

where $H \in \mathbb{C}^{r \times t}$, $\mathbb{E}(n) = 0$, $E(nn^*) = I_r$, with power constraint $\mathbb{E}(x^*x) = tr\mathbb{E}(x^*x) \leq P$. Note that SNR (signal to noise ratio) is $\rho = \frac{P}{E(|n_i|^2)} = P$.

Definition) Complex gaussian.

Given
$$x \in \mathbb{C}^n$$
, define $\hat{x} = \begin{pmatrix} \operatorname{Re}(x) \\ \operatorname{Im}(x) \end{pmatrix} \in \mathbb{R}^{2n}$.

x is said to be (complex) gaussian if \hat{x} is gaussian.

x is circulary symmetric if

$$\mathbb{E}((\hat{x} - \mathbb{E}(\hat{x})(\hat{x} - \mathbb{E}(\hat{x}))^*) = \frac{1}{2} \begin{pmatrix} \operatorname{Re}(Q) & -\operatorname{Im}(Q) \\ \operatorname{Im}(Q) & \operatorname{Re}(Q) \end{pmatrix} = \frac{1}{2} \hat{Q}$$

for some Hermitian p.s.d. $Q \in \mathbb{C}^{n \times n}$.

Note that $\mathbb{E}((x - \mathbb{E}(x))(x - \mathbb{E}(x)^*) = Q$.

Joint pdf is defined as

$$r_{\mu,Q}(x) = \det(\pi \hat{Q})^{-1/2} \exp(-(\hat{x} - \hat{\mu})^* \hat{Q}^{-1}(\hat{x} - \hat{\mu}))$$

= $\det(\pi Q)^{-1/2} \exp(-(x - \mu)^* Q^{-1}(x - \mu))$

Reflection) Some properties.

(i) Joint entropy of complex gaussian is $H(r_Q) = \log \det(\pi eQ)$.

Proposition) MIMO capacity.

(i) Let x be a circularly symmetric gaussian with zero-mean and covariance $\frac{P}{t}I_t$. The information capacity of MIMO y = Hx + n is

$$C = \mathbb{E}[\log \det(I_r + \frac{P}{t}HH^*)]$$

When $n \to infty$, $C \to r \log(1 + P)$

Proof. For the capacity if $t \to \infty$, note that $\frac{1}{t}HH^* \to I_r$ as $t \to \infty$ by SLLN.

7.7 MIMO Detectors

$$r = Ha + n$$

We want to find a which minimize ||n|| for some sense.

7.7.1 Maximum Likelihood (ML) detector

- $\hat{a} = \arg \max_{a} \|r Ha\|_{F}^{2}$ where the optimization is done by exhaustive search over $\forall a$.
- ML detection is optimal

7.7.2 Zero Forcing (ZF) detector

- $\hat{a} = G_{ZF}r = a + H^{\dagger}n$ where $G_{ZF} = H^{\dagger} = (H^*H)^{-1}H^*$.
- G_{ZF} increases noise.

7.7.3 MMSE detector

- $\hat{a} = G_{MMSE}r = a + H^{\dagger}n$ where $G_{MMSE} = (H^*H + \frac{1}{\rho}I_N)^{-1}H^*$ with SNR ρ .
- $G_{MMSE} = (H^*H + \frac{1}{\rho}I_N)^{-1}H^*$ is a solution of $\arg\min_G \epsilon ||Gr a||_F^2$ where
- MMSE receiver has good performance with reasonable complexity
- This is a mitigated version of ZF detector.

7.7.4 V-BLAST detector

• ?

8 Rate Distortion Theory

8.1 Lloyd algorithm

The goal of Lloyd algorithm is to find a set of reconstruction points.

1. Given t-th reconstruction points $x_1^{(t)}, \ldots, x_n^{(t)}$, find optimal set of regions

$$R_i = \{x | \|x - x_i^{(n)}\| \le \|x - x_i^{(n)}\| \ \forall j\}$$

- 2. Compute $x_i^{(t)} = \mathbb{E}(x|R_i) = \frac{\int_{R_i} x d\mathbb{P}(x)}{\int_{R_i} d\mathbb{P}(x)}$
- 3. Interate step 1 and 2.

8.2 Rate distortion code

Definition) Distortion.

A distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_{>0}$$

d is bounded iff

$$\max_{(x,\hat{x})\in\mathcal{X}\times\hat{\mathcal{X}}}d(x,\hat{x})<\infty$$

The distortion between sequence x_1^n, \hat{x}_1^n is

$$d(x_1^n, \hat{x}_1^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i)$$

Definition) Rate distortion code.

A $(2^{nR}, n)$ rate distortion code consists of

- 1. An index set $I = \{1, ..., 2^{nR}\}.$
- 2. An encoding ftn $f_n: \mathcal{X}^n \to [2^{nR}]$.
- 3. A decoding ftn $g_n: [2^{nR}] \to \hat{\mathcal{X}}^n$.
- 4. A distortion is defined by

$$D_n = \mathbb{E}d(X_1^n, \hat{X}_1^n) = \mathbb{E}d(X_1^n, g_n(f_n(X_1^n)))$$
$$= \sum_{x_1^n} p(x_1^n) d(x_1^n, g_n(f_n(x_1^n)))$$

(R, D) is achievable iff $\exists (2^{nR}, n)$ codes (f_n, g_n) with $D_n \to D$ as $n \to \infty$ $R(D) = \inf_{\text{achievable } (R,D)} R$ $D(R) = \inf_{\text{achievable } (R,D)} D$

Information R-D function is

$$R^{(I)}(D) = \min_{p_{\hat{X}|X}: \mathbb{E}_{(X,\hat{X}) \sim p_{\hat{X}|X}} p_X} I(X; \hat{X})$$

for given p_X

Proposition) Properties of $R^{(I)}(D)$.

(i) $R^{(I)}(D)$ is non-increasing.

Proof. Trivial from the definition.

(ii) $R^{(I)}(D)$ is convex.

Proof. We need to consider a new distortion $D_{\lambda} = \lambda D_0 + (1-\lambda)D_1$ for given distortions D_0 , D_1 with $\lambda \in (0,1)$. Let's assume that we achieve $(R_0^{(I)}, D_0)$, $(R_1^{(I)}, D_1)$ with distribution $p_{\hat{X},X;0}(\hat{x}|x)$, $p_{\hat{X},X}(\hat{x}|x)$. Let $p_{\hat{X}|X;\lambda}(\hat{x}|x) = \lambda p_{\hat{X}|X;0}(\hat{x}|x) + (1-\lambda)p_{\hat{X}|X;1}(\hat{x}|x)$. Then,

$$I_{p_{\hat{X}|X;\lambda}}(X;\hat{X}) \le \lambda I_{p_{\hat{X}|X;0}}(X;\hat{X}) + (1-\lambda)I_{p_{\hat{X}|X;1}}(X;\hat{X}) \quad (\because (2))$$

Therefore,

$$R^{(I)}(D_{\lambda}) \leq I_{p_{\hat{X}|X;\lambda}}(X;\hat{X}) \leq \lambda I_{p_{\hat{X}|X;0}}(X;\hat{X}) + (1-\lambda)I_{p_{\hat{X}|X;1}}(X;\hat{X})$$

$$\Rightarrow R^{(I)}(D_{\lambda}) \leq \lambda R^{(I)}(D_{0}) + (1-\lambda)R^{(I)}(D_{1})$$

Exercise) Compute R-D function for a few examples.

a) Binary case.

For Hamming distance $d(x, \hat{x}) = I(x \neq \hat{x})$, Ber(p) on \mathcal{X} ,

$$R^{(I)}(D) = \begin{cases} H(p) - H(D) & 0 \le D \le \min(p, 1 - p) \\ 0 & \text{o.w.} \end{cases}$$

Proof. We may assume that $p \leq \frac{1}{2}$.

$$\begin{split} I(X; \hat{X}) &= h(X) - h(X | \hat{X}) \\ &= h(\{p, 1 - p\}) - h(X \oplus \hat{X} | \hat{X}) \\ &\geq h(\{p, 1 - p\}) - h(X \oplus \hat{X}) \\ &= h(\{p, 1 - p\}) - h(\{\mathbb{P}(X \neq \hat{X}), 1 - \mathbb{P}(X \neq \hat{X})\}) \\ &= h(\{p, 1 - p\}) - h(\{\mathbb{E}d(X, \hat{X}), 1 - \mathbb{E}d(X, \hat{X})\}) \end{split}$$

Note that $\mathbb{E}d(X,\hat{X}) \leq D$. Therefore, $h(\{\mathbb{E}d(X,\hat{X}), 1 - \mathbb{E}d(X,\hat{X})\}) \leq H(\{D,1-D\})$ for $D \leq \frac{1}{2}$.

$$\begin{split} I(X; \hat{X}) & \geq h(\{p, 1-p\}) - h(\{\mathbb{E}d(X, \hat{X}), 1 - \mathbb{E}d(X, \hat{X})\}) \\ & \geq h(\{p, 1-p\}) - h(\{D, 1-D\}) \quad \text{for } D \leq \frac{1}{2} \end{split}$$

Consider a BSC model s.t. decode $\hat{X} \sim Ber(r)$. Distortion constraint $\mathbb{E}d(X,\hat{X}) \leq D \leq \frac{1}{2}$ implies $\mathbb{P}(X=1) = \mathbb{P}(X=1|\hat{X}=1)\mathbb{P}(\hat{X}=1) + \mathbb{P}(X=1|\hat{X}=0)\mathbb{P}(\hat{X}=0)$. Therefore, $r = \frac{p-D}{1-2D}$.

- (a) For $D \leq p \leq \frac{1}{2}$, let $\mathbb{P}(\hat{X} = 1) = r = \frac{p-D}{1-2D}$. Then, we have $I(X, \hat{X}) = H(p) H(D)$.
- (b) For D > p, let $\mathbb{P}(\hat{X} = 0) = 1$. Then, we have $I(X, \hat{X}) = 0$ where $\mathbb{E}d(X, \hat{X}) = p < D$.

We are done by symmetricity for $p > \frac{1}{2}$.

b) Gaussian case.

For L^2 -distance $d(x, \hat{x}) = ||x - \hat{x}||_2$, $X \sim \mathcal{N}(0, \sigma^2)$ on \mathcal{X} ,

$$R^{(I)}(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D} & 0 \le D \le \sigma^2 \\ 0 & \text{o.w.} \end{cases}$$

Proof. We may assume that $p \leq \frac{1}{2}$.

$$I(X; \hat{X}) = h(X) - h(X|\hat{X})$$

$$= h(X) - h(X - \hat{X}|\hat{X})$$

$$\geq h(X) - h(X - \hat{X})$$

$$\geq \frac{1}{2} \log(2\pi e \sigma^2) - h(\mathcal{N}(0, \mathbb{E}(X - \hat{X})^2))$$

$$= \frac{1}{2} \log(\frac{\sigma^2}{\mathbb{E}(X - \hat{X})^2}) = \frac{1}{2} \log(\frac{\sigma^2}{D})$$

- (a) For $D \leq \sigma^2$, let $\hat{X} \sim \mathcal{N}(0, \sigma^2 D)$ and $X = \hat{X} + Z$ where $Z \sim \mathcal{N}(0, D)$, $X \perp Z$. Then, we have $I(X, \hat{X}) = \frac{1}{2} \log(\frac{\sigma^2}{D})$.
- (b) For $D > \sigma^2$, let $\hat{X} = 0$. Then, we have $I(X, \hat{X}) = 0$ where $\mathbb{E}d(X, \hat{X}) = \sigma^2 < D$.

c) Parallel gaussian case.

For L^2 -distance $d(x, \hat{x}) = ||x - \hat{x}||_2$, $X_i \sim \mathcal{N}(0, \sigma_i^2)$ on \mathcal{X} ,

$$R(D) = \sum_{i=1}^{n} \frac{1}{2} [\log \frac{\sigma_i^2}{D_i}]^+$$

where $D_i = \min(\lambda, \sigma_i^2)$ with λ satisfying $\sum_{i=1}^n D_i = D$.

Proof.

$$\begin{split} I(X_1^n; \hat{X}_1^n) &= h(X_1^n) - h(X_1^n | \hat{X}_1^n) \\ &= \sum_{i=1}^n h(X_i) - \sum_{i=1}^n h(X_i - \hat{X}_i | X_1^{i-1}, \hat{X}^n) \\ &\geq \sum_{i=1}^n h(X_i) - \sum_{i=1}^n h(X_i - \hat{X}_i | \hat{X}_i) \quad \text{if } f(x_1^m | \hat{x}_1^n) = \prod_{i=1}^n f(x_i | \hat{x}_i) \\ &= \sum_{i=1}^n I(X_i, \hat{X}_i) \\ &\geq \sum_{i=1}^n R(D_i) \quad \text{if } \hat{X}_i \sim \mathcal{N}(0, \sigma_i^2 - D_i) \text{ where } D_i = \mathbb{E}((X - \hat{X})^2) \\ &= \frac{1}{2} \sum_{i=1}^n [\log \frac{\sigma_i^2}{D_i}]^+ \end{split}$$

So, we need to optimize followings

Minimize
$$\sum \frac{1}{2} \log(1 + \frac{\sigma_i^2}{D_i})$$

subject to $\sum D_i \le D, D_i \ge 0$

Therefore, we are done.

8.3 R-D theorem

Definition) Jointly typical sequences.

The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x_1^n,\hat{x}_1^n)\}$ is defined as

$$\begin{split} A_{d,\epsilon}^{(n)} &= \{(x_1^n, \hat{x}_1^n) \mid \, \max(|-\frac{1}{n}\log p(x_1^n) - H(X)|, \qquad |-\frac{1}{n}\log p(\hat{x}_1^n) - H(\hat{X})|, \\ &|-\frac{1}{n}\log p(x_1^n, \hat{x}_1^n) - H(X, \hat{X})|, \quad |d(x_1^n, \hat{x}_1^n)) - \mathbb{E}d(X, \hat{X})|) < \epsilon \} \end{split}$$

where $p(x_1^n, \hat{x}_1^n) = \prod_{i=1}^n p(x_i, \hat{x}_i), d(x_1^n, \hat{x}_1^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i).$

Theorem) Joint AEP.

Let $(X_1^n, \hat{X}_1^n) \stackrel{i.i.d}{\sim} p_{\hat{X}|X} p_X$. Then,

1.
$$\mathbb{P}((X_1^n, \hat{X}_1^n) \in A_{\epsilon,d}^{(n)}) \to 1 \text{ as } n \to \infty$$

2.
$$\forall (x_1^n, \hat{x}_1^n) \in A_{\epsilon, d}^{(n)}$$
,

$$p(\hat{x}_1^n) \ge p(\hat{x}_1^n | x_1^n) 2^{-n(I(X;\hat{X}) - 3\epsilon)}$$

Proof. 1 is trivial. For 2,

$$p(\hat{x}_1^n) = \frac{p(x_1^n, \hat{x}_1^n)}{p(x_1^n)} = p(\hat{x}_1^n) \frac{p(x_1^n, \hat{x}_1^n)}{p(x_1^n)p(\hat{x}_1^n)}$$

$$\geq p(\hat{x}_1^n) \frac{2^{-n(H(X,\hat{X}) - \epsilon)}}{2^{-n(H(X) - \epsilon)}2^{-n(H(\hat{X}) - \epsilon)}}$$

$$\geq p(\hat{x}_1^n, |x_1^n)2^{-n(I(X;\hat{X}) - 3\epsilon)}$$

Theorem. Assume that a distortion measure d is bounded. Then, if $R \ge R^{(I)}(D)$, then (R, D) is achievable. Conversely, any code that achieves distortion D with rate R must satisfy $R \ge R^{(I)}(D)$.

Proof. We assume that $R \geq R^{(I)}(D)$. Fix $\delta > 0$. To show that (R, D) is achievable, we need to construct encoding and decoding functions (f_n, g_n) with index set $I = [2^{nR}]$ satisfying $D_n = \mathbb{E}d(X_1^n, g_n(f_n(X_1^n))) \leq D + \delta$. First, generate $\hat{X}_i(w) \stackrel{i.i.d.}{\sim} p_{\hat{X}|X}, \ \forall i \in [n], \ \forall w \in [2^{nR}]$. For $T(X_1^n) = \{w \in [2^nR] | (X_1^n, \hat{X}_1^n(w)) \in A_{d,\epsilon}^{(n)} \}$, define an encoding function $f_n : \mathcal{X}^n \to [2^{nR}]$

$$f_n(X_1^n) = \begin{cases} \min_{w \in T(X_1^n)}(w) & \text{if } T(X_1^n) \neq \emptyset \\ 1 & \text{o.w.} \end{cases}$$

Define a decoding function $g_n:[2^{nR}]\to \hat{\mathcal{X}}^n\cong \mathcal{X}^n$

$$g_n(w) = \hat{X}_1^n(w)$$

Note that $\hat{X}_1^n(X_1^n) := g_n(f_n(X_1^n))$ is a r.v. since it is a function of \hat{X}_1^n and \hat{X}_1^n . Compute $\mathbb{E}_{(X_1^n,\hat{X}_1^n)}d(X_1^n,\hat{X}_1^n(X_1^n))$ as follows.

$$\begin{split} \mathbb{E}_{X \sim p_{X}, \hat{X} \sim p_{\hat{X}|X}} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) &= \mathbb{E}_{X \sim p_{X}} \mathbb{E}_{\hat{X} \sim p_{\hat{X}|X}} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) \\ &= \mathbb{E}_{X \sim p_{X}} \mathbb{E}_{\hat{X} \sim p_{\hat{X}|X}, T(X_{1}^{n}) \neq \emptyset} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) + \mathbb{E}_{X \sim p_{X}} \mathbb{E}_{\hat{X} \sim p_{\hat{X}|X}, T(X_{1}^{n}) = \emptyset} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) \\ &\leq 1 \cdot (D_{n} + \epsilon) + \mathbb{P}((X_{1}^{n}, \hat{X}(w)_{1}^{n}) \notin A_{d, \epsilon}^{(n)} \ \forall w \in [2^{nR}]) \cdot d_{\max} \end{split}$$

Let's bound $\mathbb{P}((X, \hat{X}(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}])$ as follows.

$$\begin{split} \mathbb{P}((X_1^n, \hat{X}_1^n(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}]) &= \sum_{x_1^n} p(x_1^n) \sum_{\hat{x}_1^n : (x_1^n, \hat{x}_1^n(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}]} p(\hat{x}_1^n) \\ &= \sum_{x_1^n} p(x_1^n) \sum_{\hat{x}_1^n} p(\hat{x}_1^n) I((x_1^n, \hat{x}_1^n(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}]) \\ &= \sum_{x_1^n} p(x_1^n) [1 - \sum_{\hat{x}_1^n} p(\hat{x}_1^n) I((x_1^n, \hat{x}_1^n(w)) \in A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}])] \\ &= \int \prod_{w=1}^{2^{nR}} \mathbb{P}_{\hat{X} \sim p_{\hat{X}|x}} ((x_1^n, \hat{X}_1^n(w)) \notin A_{d,\epsilon}^{(n)}) \ d\mathbb{P}_X(x_1^n) \\ &= \int \prod_{w=1}^{2^{nR}} [1 - \mathbb{P}_{\hat{X} \sim p_{\hat{X}|x}} ((x_1^n, \hat{X}_1^n(w)) \in A_{d,\epsilon}^{(n)})] \ d\mathbb{P}_X(x_1^n) \end{split}$$

Conversely, assume that we have a code with distortion less than D. Then,

$$\begin{split} nR &\geq H(\hat{X}_{1}^{n}) \\ &\geq H(\hat{X}_{1}^{n}) - H(\hat{X}_{1}^{n}|X_{1}^{n}) = I(X_{1}^{n},\hat{X}_{1}^{n}) \quad (\because \hat{X}_{1}^{n} \text{ is a ftn of } X_{1}^{n}) \\ &\geq H(\hat{X}_{1}^{n}) - H(\hat{X}_{1}^{n}|\hat{X}_{1}^{n}) = \sum_{i=1}^{n} H(X_{i}) - \sum_{i=1}^{n} H(X_{i}|\hat{X}_{1}^{n},X_{1}^{i-1}) \quad (\because X_{i} \overset{i.i.d.}{\sim} p_{X}) \\ &\geq \sum_{i=1}^{n} H(X_{i}) - \sum_{i=1}^{n} H(X_{i}|\hat{X}_{i}) = \sum_{i=1}^{n} I(X_{i},\hat{X}_{i}) \\ &\geq \sum_{i=1}^{n} R^{(I)}(\mathbb{E}(d(X_{i},\hat{X}_{i}))) = n\frac{1}{n} \sum_{i=1}^{n} R^{(I)}(\mathbb{E}(d(X_{i},\hat{X}_{i}))) \\ &\geq nR^{(I)}(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(d(X_{i},\hat{X}_{i}))) \quad (\because R^{(I)} \text{ is convex , Jensen}) \\ &= nR^{(I)}(\mathbb{E}(d(X_{1}^{n},\hat{X}_{1}^{n}))) \\ &\geq nR^{(I)}(D) \quad (\because R^{(I)} \text{ is non-increasing}) \end{split}$$

9 Variational Auto Encoder (VAE)

9.1 Problem Setting

- Given probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- $\mathcal{X} = \mathbb{R}^D$: a data space
- $\mathcal{Z} = \mathbb{R}^d$: a latent space
- Data $x^{(1)}, x^{(2)}, \ldots$ are realizations of a r.v. $X: \Omega \to \mathcal{X}$
- Hidden states $z^{(1)}, z^{(2)}, \ldots$ are realization of a r.v. $Z: \Omega \to \mathcal{Z}$.
- We assume that $X, Z \sim p_{X,Z}(\cdot, \cdot; \theta)$ and $Z \sim p_Z(\cdot; \theta)$ where $p_Z(\cdot; \theta)$ is in the exponential family.
- Conventionally, we simply assume that $p_Z(\cdot;\theta) = \mathcal{N}(0,I)$.
- $x^{(i)}$ is governed by $z^{(i)}$. Specifically,
 - 1. Generate $z^{(i)}$
 - 2. Then, $X^{(i)} \sim p_{X|Z=z^{(i)}}(\cdot | z^{(i)}; \theta^*)$

Furthermore, we assume that

- 1. $p_X(x;\theta) = \int p_{X|Z=z}(x|z;\theta)p_Z(z;\theta)dz$ dz is intractable (so we cannot evaluate or differentiate the marginal likelihood)
- 2. True posterior density $p_{Z|X=x}(z|x;\theta) = \frac{p_{X|Z=z}(x|z;\theta)p_{Z}(z;\theta)}{p_{X}(x;\theta)}$ is intractable (so the EM algorithm cannot be used), and where the required integrals for any reasonable mean-field VB algorithm are also intractable.
- 3. A large dataset: we have so much data that batch optimization is too costly; we would like to make parameter updates using small minibatches or even single datapoints. Sampling-based solutions, e.g. Monte Carlo EM, would in general be too slow, since it involves a typically expensive sampling loop per datapoint.

9.2 Goal

- 1. Infer $\hat{\theta}^*$, MAP (MLE) of θ^*
- 2. Given $x^{(i)}$, generate θ

9.3 The variational bound (Evidence Lower Bound, ELBO)

Recall that we want to obtain $\hat{\theta}^*$, MAP (MLE) of θ^* , that maximize log-likelihood log $p_X(x;\theta)$. Hence, we start from:

$$\log p_X(x;\theta)$$
.

To estimate the log-likelihood, we introduce an alternative pdf $q_{Z|X=x}(\cdot|x;\phi)$ of Z depending on x and ϕ . We hope that this pdf would be a proxy of the true posterior $p_{Z|X=x}(\cdot|x;\theta)$. With these pdfs, we do a little trick as follows:

$$\log p_X(x;\theta) = \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)}[\log p_X(x;\theta)]$$

$$= \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)}[\log(p_X(x;\theta) \cdot \frac{q_{Z|X=x}(Z|x;\phi)}{q_{Z|X=x}(Z|x;\phi)} \cdot \frac{p_{Z|X=x}(Z|x;\theta)}{p_{Z|X=x}(Z|x;\theta)})]$$

Then we extract the KL-divergence between $q_{Z|X=x}(\cdot|x;\phi)$ and $p_{Z|X=x}(\cdot|x;\theta)$:

$$\log p_X(x;\theta) = \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)} [\log(p_X(x;\theta) \cdot \frac{p_{Z|X=x}(Z|x;\theta)}{q_{Z|X=x}(Z|x;\phi)}) + \log \frac{q_{Z|X=x}(Z|x;\phi)}{p_{Z|X=x}(Z|x;\theta)}]$$

$$= \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)} [\log(p_X(x;\theta) \cdot \frac{p_{Z|X=x}(Z|x;\theta)}{q_{Z|X=x}(Z|x;\phi)})] + KL(q_{Z|X=x}(Z|x;\phi)||p_{Z|X=x}(Z|x;\theta))$$

$$= \mathcal{L}(\theta,\phi;x) + KL(q_{Z|X=x}(\cdot|x;\phi)||p_{Z|X=x}(\cdot|x;\theta))$$

$$\geq \mathcal{L}(\theta,\phi;x)$$

where

$$\begin{split} \mathcal{L}(\theta,\phi;x) &= \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)}[-\log q_{Z|X=x}(Z|x;\phi) + \log p_{X,Z}(x,Z;\theta)] \\ &= \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)}[-\log q_{Z|X=x}(Z|x;\phi) + (\log p_{Z}(Z;\theta) + \log p_{X|Z}(x|Z;\theta))] \\ &= -KL(q_{Z|X=x}(\cdot|x;\phi)\|p_{Z}(\cdot;\theta)) + \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)}[\log p_{X|Z}(x|Z;\theta))] \\ &= \text{regularizer for } \phi + \text{negative reconstruction error} \\ &=: \text{ELBO}(\theta,\phi;x). \end{split}$$

Hence, maximizing the ELBO means maximizing the log-likelihood $p_X(x;\theta)$.

9.4 The SGVB estimator

Now, we want to maximize the ELBO:

$$\mathcal{L}(\theta, \phi; x) = \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x;\phi)} \left[-\log q_{Z|X=x}(Z|x;\phi) + \log p_{X,Z}(x,Z;\theta) \right]$$

To this end, we need to generate $Z \sim q_{Z|X=x}(\cdot|x;\phi)$. As direct sampling from $q_{Z|X=x}(\cdot|x;\phi)$ is impossible, we reparameterize it by

$$\tilde{z} = g(\epsilon, x; \phi)$$
 with $\epsilon \sim r_{\epsilon}$

where $g(\epsilon, x; \phi)$ is a differentiable transformation and r_{ϵ} is a distribution that is easy to sample. Hence, with the sampled $x = x^{(i)}$, Stochastic Gradient Variational Bayes (SGVB) estimator is defined as follows:

$$\mathcal{L}^{A}(\theta, \phi; x^{(i)}) \approx \frac{1}{L} \sum_{l=1}^{L} \left[-\log q_{Z|X=x^{(i)}}(\tilde{z}_{l}^{(i)}|x^{(i)}; \phi) + \log p_{X,Z}(x^{(i)}, \tilde{z}_{l}^{(i)}; \theta) \right]$$

where $\tilde{z}_l^{(i)} = g(\epsilon_l, x^{(i)}; \phi)$ with $\epsilon_l \stackrel{i.i.d.}{\sim} r_{\epsilon}$.

9.5 The AEVB estimator

The ELBO can be written in another form as well:

$$\mathcal{L}(\theta, \phi; x) = -KL(q_{Z|X=x}(\cdot|x; \phi) || p_Z(\cdot; \theta)) + \mathbb{E}_{Z \sim q_{Z|X=x}(\cdot|x; \phi)}[\log p_{X|Z}(x|Z; \theta)).$$

Assume that we can analytically integrate $KL(q_{Z|X=x}(\cdot|x;\phi)||p_Z(\cdot;\theta))$. Under such assumption and sampled $x=x^{(i)}$, Auto Encoding Variational Bayes (AEVB) estimator is defined as:

$$\mathcal{L}^{B}(\theta, \phi; x^{(i)}) \approx -KL(q_{Z|X=x^{(i)}}(\cdot|x^{(i)}; \phi) ||p_{Z}(\cdot; \theta)) + \frac{1}{L} \sum_{l=1}^{L} [\log p_{X|Z=\tilde{z}_{l}^{(i)}}(x^{(i)}|\tilde{z}_{l}^{(i)}; \theta))]$$

where $\tilde{z}_l^{(i)} = g(\epsilon_l, x^{(i)}; \phi)$ with $\epsilon_l \stackrel{i.i.d.}{\sim} r_{\epsilon}$.

Exercise) VAE.

a) Indeed, if we assume $\epsilon_l \overset{i.i.d.}{\sim} r_{\epsilon} = \mathcal{N}(0, I)$, the analytic integration becomes possible. With $\mu^{(i)} \in \mathbb{R}^d$ and $\sigma^{(i)} \in \mathbb{R}^d$, i.e., outputs of the encoding MLP for $x^{(i)}$ under variational parameters ϕ , we obtain $\tilde{z}_l^{(i)}$ as follows:

$$\tilde{z}_{l}^{(i)} = g(\epsilon_{l}, x^{(i)}; \phi) := \mu^{(i)} + \sigma^{(i)} \cdot \epsilon_{l}.$$

Hence, we have $\tilde{z}^{(i)} \sim \mathcal{N}(\mu^{(i)}, \Sigma^{(i)})$ where $\Sigma^{(i)} = \operatorname{diag}((\sigma_1^{(i)})^2, \dots, (\sigma_d^{(i)})^2)$. Now, we can do the analytical integration by computing the KL divergence between two normal distribution $\mathcal{N}(0, I)$ and $\mathcal{N}(\mu^{(i)}, \Sigma^{(i)})$:

$$\begin{split} \mathcal{L}^{B}(\theta, \phi; x^{(i)}) \approx & \frac{1}{2} (d + \sum_{k=1}^{d} \log(\sigma_{k}^{(i)}) - \|\mu^{(i)}\|^{2} - \sum_{k=1}^{d} \sigma_{k}^{(i) \, 2}) \\ & + \frac{1}{L} \sum_{l=1}^{L} [\log p_{X|Z = \tilde{z}_{l}^{(i)}}(x^{(i)}|\tilde{z}_{l}^{(i)}; \theta))]. \end{split}$$

10 Parsing

10.1 CKY algorithm

We are given as follows:

- CFG (N, Σ, R, S) where N (Σ) is a of non-terminals (terminals), R is a set of rules, and $S \in N$ is a start non-terminal (NT).
- R is in CNF, i.e., $r \in R$ is either $(X \to Y_1Y_2 \text{ for some } X, Y_1, Y_2 \in \Sigma)$ or $(X \to \beta \text{ for some } X \in \Sigma \text{ and } \beta \in N)$.
- q is a probability over R, i.e., we have a PCFG.
- $s = w_1 \cdots w_n$ is a sentence of n tokens.

Our goal is to find the most probable derivation t of s.

Define a Chart To achieve this goal, CKY algorithm defines a $n^2|N|$ -sized chart π where each cell $\pi(i, j, X)$ is the maximum probability of a tree with the root X spanning $w_i \cdots w_j$ for $i, j \in \{1, \ldots, n\}$ and $X \in N$. Then, our goal is to find the derivation that attains $\pi(1, n, S)$.

Dynamic Programming Note that we have following base cases:

$$\pi(i, i, X) = q(X \to w_i)$$

and the recursive formula:

$$\pi(i,j,X) = \max_{\substack{\forall k \in \{i,\dots,j\},\\ \forall (X \to YZ) \in R}} q(X \to YZ) \cdot \pi(i,k,Y) \cdot \pi(k,j,Z)$$

To fill out each cell, we need to check $n|N|^2$ candidates.

Complexity We have $n^2|N|$ cells, each of which require $n|N|^2$ checks. Hence, the computational cost is $n^3|N|^3$.

10.2 Lexicalized PCFGs

Weaknesses of PCFGS Lack of (1) sensitivity to lexical information, e.g., workers dumped sacks into a bin, and (2) structural frequencies, e.g., dogs in houses and cats. Refer to the slide 50-55.

Lexicalization Main idea is to lexicalize rules to get lexical information at every node, i.e., define a head for every rule in the grammar (one child on RHS). This defines the head word of every phrase, which will provide a lexicalization of rules

The immediate question is, how to determine a head for each rule?. This is called *lexi-calization rule*. Basically, a VP has a verb as a head and a NP has a noun as a head. Details about lexicalization rule is manually defined. Refer to the slide 63- about lexicalized PCFGs.