Neural Sequence-to-grid Module for Learning Symbolic Rules

AAAI 2021

Segwang Kim¹, Hyoungwook Nam², Joonyoung Kim¹, Kyomin Jung¹

¹ Seoul National University, Seoul, Korea

² University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Background

 Symbolic reasoning problems are testbeds for assessing logical inference abilities of deep learning models.

Program code evaluation [1]

```
Input:
    j=8584
    for x in range(8):
        j+=920
    b=(1500+j)
    print((b+7567))

Target: 25011.
```

bAbl tasks [2]

Task 2: Two Supporting Facts

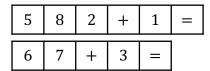
John is in the playground.
John picked up the football.
Bob went to the kitchen.
Where is the football? A:playground

Background

 Symbolic reasoning problems are testbeds for assessing logical inference abilities of deep learning models.

Program code evaluation [1]

```
Input:
    j=8584
    for x in range(8):
        j+=920
    b=(1500+j)
    print((b+7567))


Target: 25011.
```

bAbl tasks [2]

Task 2: Two Supporting Facts John is in the playground. John picked up the football. Bob went to the kitchen. Where is the football? A:playground

 The determinism of symbolic problems allows us to systematically test deep learning models with out-of-distribution (OOD) data.

Training examples

OOD Test Examples

3	0	5	3	4	+	4	2	1	=		
6	9	5	2	1	+	5	0	0	2	9	Ш

Humans with algebraic mind can naturally extend learned rules.

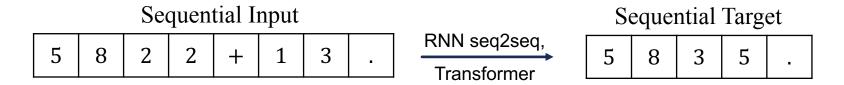
Background

 However, deep learning models cannot extend learned rules to OOD (out-of-distribution) examples.

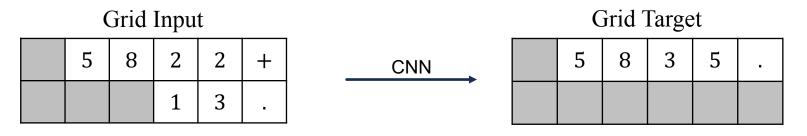
Number sequence prediction problems [3]

Tasks	Reverse-order (training)	Geometric	Arithmetic	Fibonacci
LSTM	28.4% (1.2%)	79.4%	77.1%	80.5%
GRU	51.9% (0.9%)	69.0%	77.1%	79.3%
Attention(unidirectional)	42.0% (8.8%)	62.8%	77.0%	69.3%
Attention(bidirectional)	0.0% (0.0%)	51.0%	72.9%	60.9%
Stack-RNN	0.0% (0.0%)	64.1%	63.8%	69.4%
NTM	0.0% (0.0%)	57.1%	65.7%	68.1%

Error

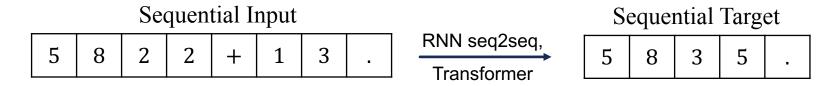

Middle school level mathematics problems [4]

	Parameters	Interpolation	Extrapolation
Simple LSTM	18M	0.57	0.41
Simple RMC	38M	0.53	0.38
Attentional LSTM, LSTM encoder	24M	0.57	0.38
Attentional LSTM, bidir LSTM encoder	26M	0.58	0.42
Attentional RMC, bidir LSTM encoder	39M	0.54	0.43
Transformer	30M	0.76	0.50

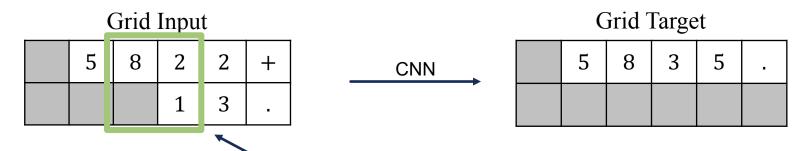

Accuracy

Motivation

- Idea: if we align an input sequence into a grid, learning symbolic rules becomes easier.
- Consider a toy decimal addition problems in two different setups:
 - Sequential setup



Grid setup



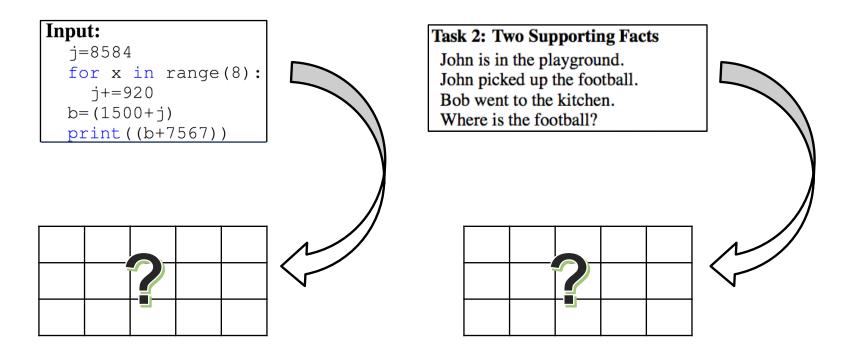
Motivation

- Idea: if we align an input sequence into a grid, learning symbolic rules becomes easier.
- Consider a toy decimal addition problems in two different setups:
 - Sequential setup

Grid setup

The convolution kernel can learn the addition rule, i.e., **inductive bias**.

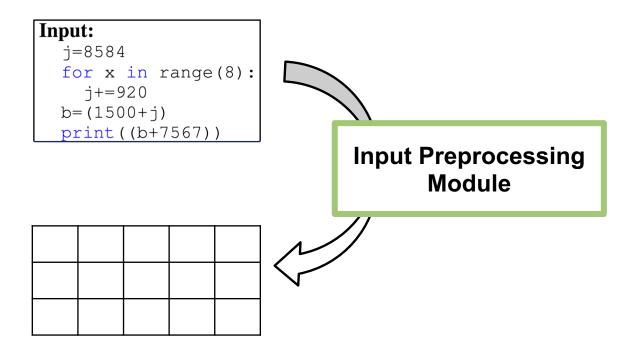
Usefulness of Aligned Grid Inputs


Depending on setups, OOD generalization is achieved or not.

 Providing aligned grid inputs for CNN can be key to extend symbolic rules.

Motivation

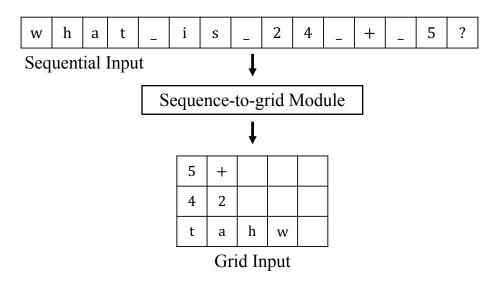
However, most of symbolic problems cannot be formulated in such grid setup.



How to align programming instructions?

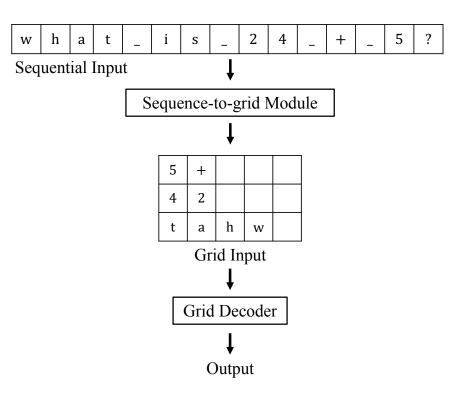
How to align words?

Research Goal

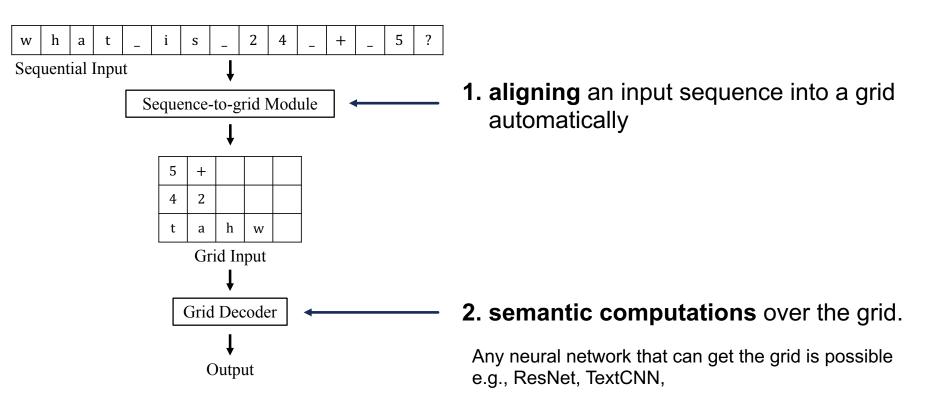

■ Therefore, we need a new input preprocessing module.

The module must automatically align an sequence into a grid without supervision for the alignment.

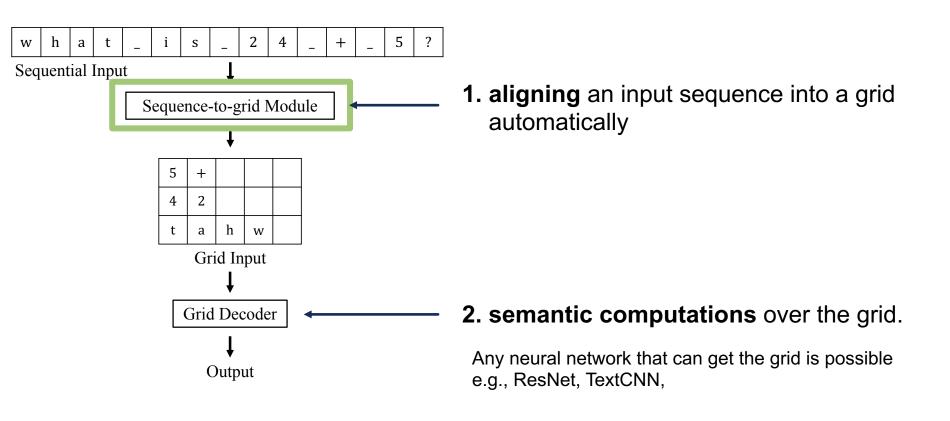
Our Method


- We propose a neural sequence-to-grid (seq2grid) module.
 - an input preprocessor.
 - It learns how to segment and align an input sequence into a grid.

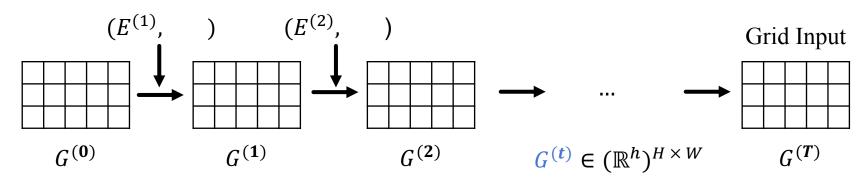
- The preprocessing is done via our novel differentiable mapping.
 - It ensures a joint training of our module and the neural network in an end-to-end fashion via a backpropagation.


Method: Sequence-input grid-output Architecture

■ First, we propose the **sequence-input grid-output architecture**.

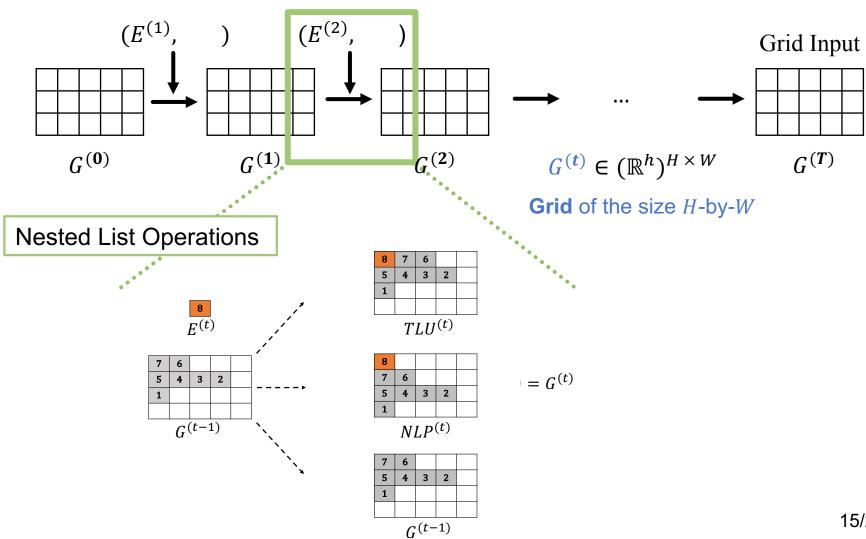

Method: Sequence-input grid-output Architecture

■ First, we propose the **sequence-input grid-output architecture**.

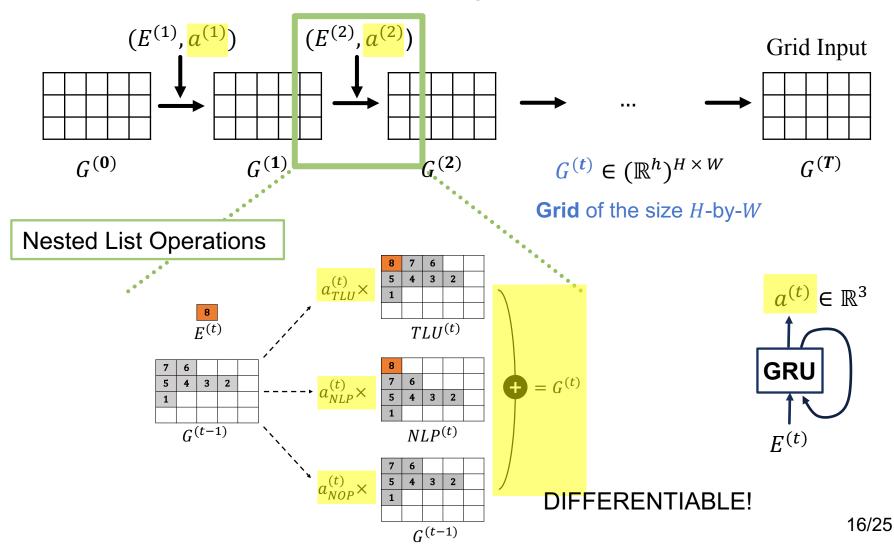

Method: Sequence-input grid-output Architecture

■ First, we propose the **sequence-input grid-output architecture**.

Method: Automatic Alignment


■ Inside sequence-to-grid module, our automatic alignment is done as **zero-initialized nested list** $G^{(0)}$ grows as follows.

Grid of the size *H*-by-*W*


Method: Automatic Alignment

Inside sequence-to-grid module, our automatic alignment is done as **zero-initialized nested list** $G^{(0)}$ grows as follows.

Method: Automatic Alignment

• Inside sequence-to-grid module, our automatic alignment is done as **zero-initialized nested list** $G^{(0)}$ grows as follows.

Arithmetic and Algorithmic Problems

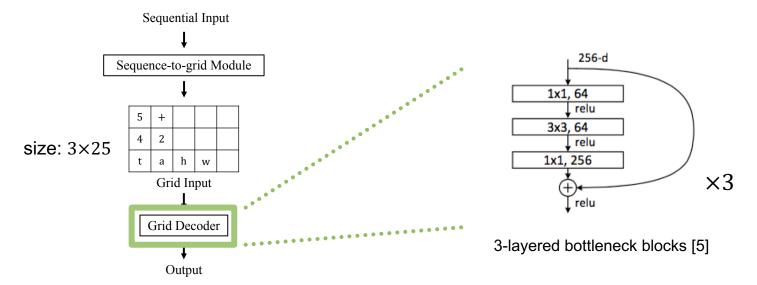
We test our module on three arithmetic and algorithmic problems.

Number sequence prediction problem

```
Input 7008 -205 4 7221.
Target 14233.
```

Algebraic word problem

```
Input Sum -3240245475 and 11.
Target -3240245464
```

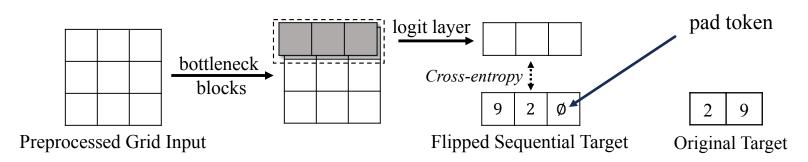

Computer program evaluation problem

```
Input j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
Target 368.
```

- Tokenize all examples by characters and decimal digits.
- Two test sets.
 - In-distribution (ID): examples sampled from the training distribution.
 - Out-of-distribution (OOD): examples with unprecedented longer digits.

Arithmetic and Algorithmic Problems

Grid decoder: three stacks of 3-layered bottleneck blocks of ResNet.



Arithmetic and Algorithmic Problems

Grid decoder: three stacks of 3-layered bottleneck blocks of ResNet.

■ The seq2grid module and the grid decoder are **simultaneously** trained by reducing cross-entropy loss.

Results: Arithmetic and Algorithmic Problems

On OOD test set, our models outperform baselines by large margin.

	Sequ	uence	Add-	or-sub	Pro	Program	
	ID	OOD	ID	OOD	ID	OOD	
Baselines							
LSTM	0.21	0.00	0.99	0.00	0.25	0.07	
LSTM-Atten	0.68	0.00	1.00	0.00	0.37	0.01	
RMC	0.01	0.00	0.99	0.00	0.33	0.01	
Transformer	0.97	0.00	0.97	0.00	0.37	0.00	
UT	1.00	0.00	1.00	0.00	0.62	0.00	
Ours							
S2G-CNN	0.96	0.99	0.98	0.53	0.51	0.33	
S2G-ACNN	0.90	0.92	0.96	0.55	0.44	0.35	

Table 1: Best sequence-level accuracy (out of 5 runs) on number sequence prediction problems (sequence), algebraic word problems (Add-or-sub), and computer program evaluation problems (Program)

In number sequence prediction problem, our module automatically aligns numbers by digit scales.

Results: Arithmetic and Algorithmic Problems

- In computer program evaluation problem,
 - We investigate accuracy by instructions.

	instruction	ID	OOD				
LSTM-Atten	IF-ELSE FOR	0.46 0.06 0.07	0.26 0.03 0.04	•	<pre>print((11*7288719)) print(((6110039 if 7327755<3501784 else 1005398)*11))</pre>		
UT	IF-ELSE FOR *	0.81 0.38 0.52	0.01 0.00 0.00	7	b=6367476 for x in range(19):b-=9082877 print((3569363 if 7448172<9420320 else b)		
S2G-CNN	IF-ELSE FOR	0.73 0.20 0.25	0.57 0.09 0.14		e=(450693 if 4556818<2999168 else 3618338) for x in range(10):e-=4489485 print(e)		

OOD snippet examples

57% accuracy in snippets containing if-else is surprising.

Results: Arithmetic and Algorithmic Problems

- In computer program evaluation problem,
 - We investigate accuracy by instructions.

	instruction	ID	OOD	
LSTM-Atten	IF-ELSE FOR *	0.46 0.06 0.07	0.26 0.03 0.04	print((11*7288719)) print(((6110039 if 7327755<3501784 else 1005398 * 1))
UT	IF-ELSE FOR *	0.81 0.38 0.52	0.01 0.00 0.00	b=6367476 for x in range(19):b-=9082877 print((3569363 if 7448172<9420320 else b))
S2G-CNN	IF-ELSE FOR	0.73 0.20 0.25	0.57 0.09 0.14	e=(450693 if 4556818<2999168 else 3618338) for x in range(10) e-=4489485 print(e)

OOD snippet examples

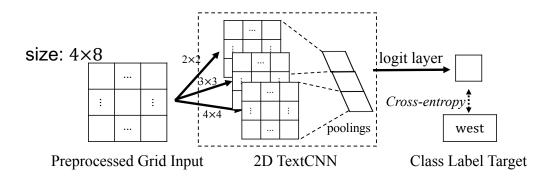
- 57% accuracy in snippets containing if-else is surprising.
 - Since those snippets can contain other instructions as well.

bAbl QA Tasks

We further test our module on bAbl QA tasks.

Task 2. two-supporting-facts

 $\langle CLS \rangle$ Where is the apple ? $\langle SEP \rangle$ Mary journeyed to the garden . Sandra got the football there . Mary picked up the apple there . Mary dropped the apple .


Task 17. basic-deduction

 $\langle CLS \rangle$ What is gertrude afraid of ? $\langle SEP \rangle$ Wolves are afraid of sheep . Gertrude is a wolf . Winona is a wolf . Sheep are afraid of mice . Mice are afraid of cats . Cats are afraid of sheep . Emily is a cat . Jessica is a wolf .

Task 19. path-finding

 $\langle CLS \rangle$ How do you go from the garden to the office ? $\langle SEP \rangle$ The kitchen is west of the office . The office is north of the hallway . The garden is east of the bathroom . The garden is south of the hallway . The bedroom is east of the hallway .

- Training models on all tasks at once (10k joint tasks).
- Tokenize the input (question + story) by words.
- Grid decoder: a 2D version of TextCNN.

Results: bAbl QA Tasks

Our sequence-to-grid method makes bAbl tasks easier.

	#params	Error	#Failed tasks
Baselines ⁵			
LSTM	25.6M	24.9 ± 5.8	12.1 ± 3.7
Transformer	0.5M	33.1 ± 1.7	18.9 ± 0.3
UT	0.5M	26.8 ± 6.0	15.0 ± 4.0
TextCNN	0.2M	37.8 ± 0.4	19.0 ± 0.0
Ours			
S2G-TextCNN	0.8M	10.8 ± 0.8	6.0 ± 0.0

Table 3: Error and #Failed tasks (> 5% error) on the bAbI QA 10k joint tasks (for 10 runs).

- TextCNN fails at almost all tasks.
- Our module can compress long inputs into grid inputs.
 - 79 (average # of input tokens) > 32 (# of the grid slots)
 - Only necessary words along story arcs are selected.
- Our model does not need a complex and expensive memory.

Closing Remarks

- Our seq2grid module:
 - Input preprocessor.
 - It automatically aligns an sequential input into a grid.
 - During training, it requires no supervision for the alignment.
 - Its nest list operations ensure the **joint training** of the module and the grid decoder.
 - It enhances neural networks in various symbolic reasoning tasks.
- Code: https://github.com/segwangkim/neural-seq2grid-module
- About Me!
 - Homepage: https://segwangkim.github.io/ e-mail: ksk5693@snu.ac.kr
 - Ongoing research: GPT/T5-based approach for achieving compositional generalization.