Number Sequence Prediction Problems for **Evaluating Computational Powers of Neural Networks**

Hyoungwook Nam **College of Liberal Studies**

Seoul National University

Segwang Kim Department of Electrical and **Computer Engineering** Seoul National University

Kyomin Jung

Department of Electrical and **Computer Engineering** Seoul National University

MOTIVATION

- Neural networks have been very successful for learning tasks on various data types including image data and phonetic data
- But it is hard to find well-defined discrete and algorithmic tasks where neural networks have been successfully applied
- Inspired by number series tests for human

intelligence, number sequence prediction tasks can assess computational powers of neural networks

OBJECTIVES

- Define a set of algorithmic machine learning tasks with numerical sequences
- Quantify the **complexities** of simulating the sequence generation rules
- Evaluate **computational powers** of current deep learning models

Digit-level (RNN)

 $a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8$

A digit input per a time step Digits in a 2-dimensional grid

CNNs tend to learn deep but narrow rules

B ₃	520100	0 5	200	0 0 0	
Error	examples	from	numl	ber-le	eve

Fibonacci prediction

COMPUTATIONAL POWERS

DIFFICULTY AND COMPLEXITY

The number of logical gates and the depth of the circuit

Results

Tasks	Reverse-order (training)	Geometric	Arithmetic	Fibonacci
LSTM	28.4% (1.2%)	79.4%	77.1%	80.5%
GRU	51.9% (0.9%)	69.0%	77.1%	79.3%
Attention(unidirectional)	42.0% (8.8%)	62.8%	77.0%	69.3%
Attention(bidirectional)	0.0%~(0.0%)	51.0%	72.9%	60.9%
Stack-RNN	0.0% (0.0%)	64.1%	63.8%	69.4%
NTM	0.0% (0.0%)	57.1%	65.7%	68.1%

Reverse-order (palindrome) training errors suggest that RNNs can simulate finite automata

Memory-augmented models could simulate up to pushdown automata

TAKEAWAYS

- Number sequence predictions effectively evaluate computational powers of neural networks
- Complexity of a number-level problem can be defined with the

combinatorial logic

Computational powers of current recurrent models are limited up to those of pushdown automata

Machine Intelligence lab

hwnam831@snu.ac.kr

33rd AAAI Conference on Artificial Intelligence