Number Sequence Prediction Problems for Evaluating Computational Powers of Neural Networks

Hyoungwook Nam College of Liberal Studies

Seoul National University

Segwang Kim
Department of Electrical and Computer Engineering Seoul National University

Kyomin Jung
Department of Electrical and Computer Engineering
Seoul National University

MOTIVATION

Neural networks have been very successful for learning tasks on various data types including image data and phonetic data

But it is hard to find well-defined discrete and algorithmic tasks where neural networks have been successfully applied
Inspired by number series tests for human intelligence, number sequence prediction tasks can assess computational powers of neural networks

OBJECTIVES

Define a set of algorithmic machine learning tasks with numerical sequences

Quantify the complexities of simulating the sequence generation rules

Evaluate computational powers of current deep learning models

TWO TYPES OF PROBLEMS

Number-level (CNN)
Digit-level (RNN)

Digits in a 2-dimensional grid
Predict the numbers in parallel

A digit input per a time step Predict the digits sequentially

COMPUTATIONAL POWERS

DIFFICULTY AND COMPLEXITY
The number of logical gates and the depth of the circuit

Order-2
Width $=\theta\left(b^{2}\right)$
Depth $=1$

Order-3
Width $=\theta\left(b^{3}\right)$
Depth $=1$

Order-2
Width $=\theta\left(b^{2}\right)$ Depth $=2$

NUMBER-LEVEL SEQUENCE PREDICTION

Models

Sequences
Order-2 Relations
Fibonacci: $A_{n+2}=A_{n+1}+A_{n}$

- Arithmetic: $A_{n+2}=2 A_{n+1}-A_{n}$

Order-3 Relations

- Progression: $A_{n+3}=3 A_{n+2}-3 A_{n+1}+A_{n}$
- Jumping Fibonacci: $A_{n+3}=A_{n+2}+A_{n}$

Results

Y-axis: error rates / X-axis: \# of training examples Depth is a better indicator for the complexity CNNs tend to learn deep but narrow rules

DIGIT-LEVEL SEQUENCE PREDICTION
 Models
 Sequences

Recurrent model

Counting sequences $\left(A_{n+1}=A_{n}+c\right)$

- Finite automata

Palindromes (e.g. abcd_dcba)
Pushdown automata
Fibonacci/Arithmetic/Geometric
Queue automata (= Turing)

Results

Tasks	Reverse-order (training)	Geometric	Arithmetic	Fibonacci
LSTM	$28.4 \%(1.2 \%)$	79.4%	77.1%	80.5%
GRU	$51.9 \%(0.9 \%)$	69.0%	77.1%	79.3%
Attention(unidirectional)	$42.0 \%(8.8 \%)$	62.8%	77.0%	69.3%
Attention(bidirectional)	$0.0 \%(0.0 \%)$	51.0%	72.9%	60.9%
Stack-RNN	$\mathbf{0 . 0 \%}(0.0 \%)$	64.1%	63.8%	69.4%
NTM	$\mathbf{0 . 0 \%}(0.0 \%)$	57.1%	65.7%	68.1%

Reverse-order (palindrome) training errors suggest that RNNs can simulate finite automata
Memory-augmented models could simulate up to pushdown automata

TAKEAWAYS

- Number sequence predictions effectively evaluate computational powers of neural networks

Complexity of a number-level problem can be defined with the combinatorial logic

Computational powers of current recurrent models are limited up to those of pushdown automata

