Neural Sequence-to-grid Module for Learning Symbolic Rules

Summary

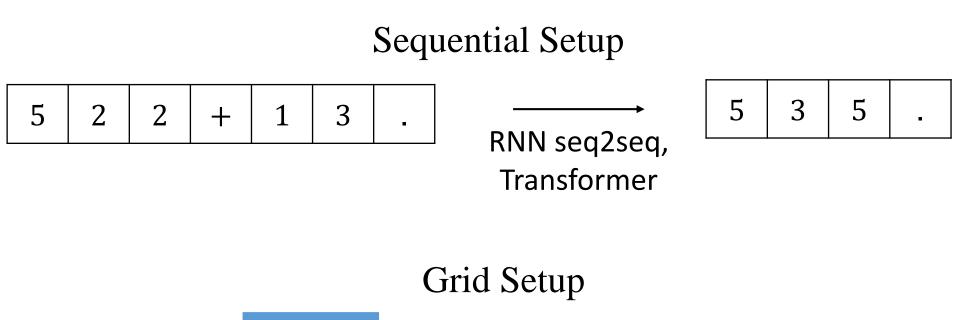
We propose a **neural sequence-to-grid module** that enhances a neural network to learn symbolic rules. Specifically,

The module is an input preprocessor that automatically aligns a sequential input into a grid.

The module works differentiably, which ensures the joint training of the module and the neural network without any supervision for the alignment. Empirically, our models outperform the standard seq2seq models at arithmetic and algorithmic problems such as program code evaluation tasks and the bAbI QA tasks.

Introduction

Symbolic reasoning problems, e.g., program code evaluation tasks or the bAbI tasks, are tasks to learn deterministic symbolic rules. Hence, they are useful testbeds for assessing the logical inference abilities of deep learning models. Whereas humans can extend the learned rules on out-of-distribution (OOD) data, it has been found that the standard seq2seq models cannot systematically generalize on OOD data. To address this difficulty, our idea is to align an **input sequence into a grid.** Our idea can be described by the following toy addition problem in two different setups.



	5	2	2	+		5	3	5	-
		1	3		CNN				

We trained neural networks on additions of short-digit numbers and test them on additions of long-digit numbers. As a result, only the grid setup leads to OOD generalization.

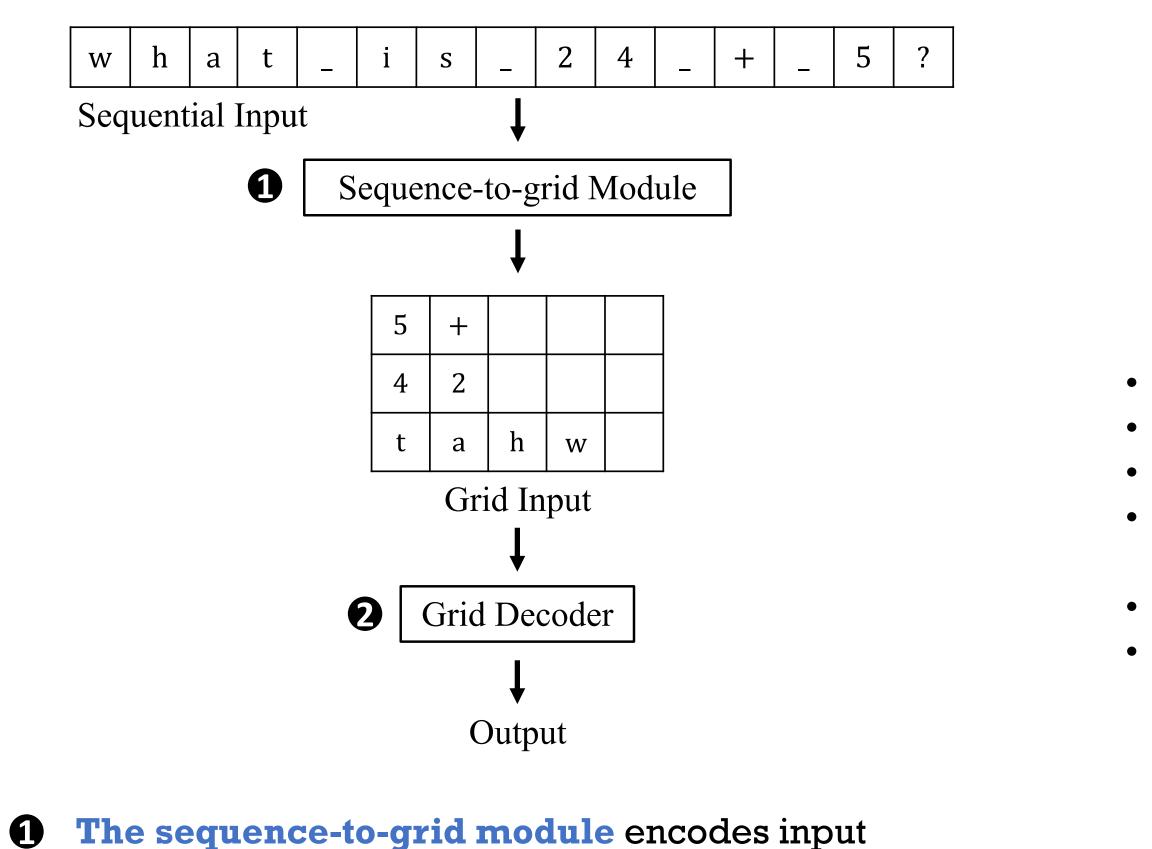
				-				- 1.0
	LSTM seq2 <i>s</i> eq	1.00	1.00	0.96	0.03	0.00	0.00	- 0.8
Sequential	LSTM-Atten seq2 <i>s</i> eq	1.00	1.00	1.00	0.01	0.00	0.00	
Setup	Transformer -	1.00	0.99	0.99	0.01	0.00	0.00	- 0.6
	Universal Transformer	1.00	1.00	1.00	0.01	0.00	0.00	- 0.4
\mathbf{C} · 1	~			 				- 0.2
Grid	< CNN -	1.00	1.00	1.00	1.00	0.99	1.00	
Setup								- 0.0
I		ID-3	ID-4	ID-5	00D-6	00D-7	00D-8	
				Validat	ion Set	:		

However, we cannot formulate most of the symbolic problems in such a grid setup.

¹Segwang Kim, ²Hyoungwook Nam, ¹Joonyoung Kim, ¹Kyomin Jung ¹Seoul National University, ²University of Illinois at Urbana-Champaign https://github.com/SegwangKim/neural-seq2grid-module

Method

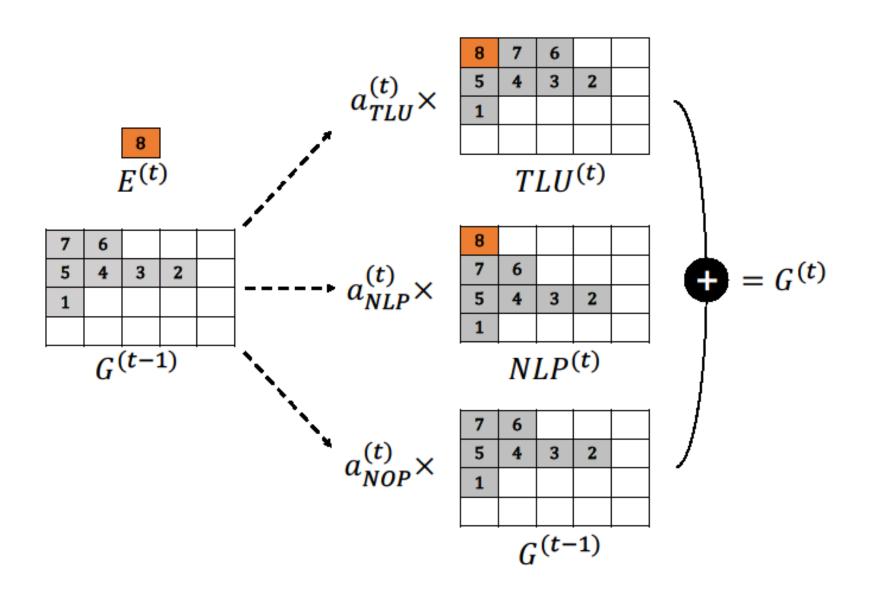
- To implement our **sequence-to-grid** method, we suggest the sequence-input grid-output architecture that decouples symbolic reasoning into two steps: automatically aligning an input sequence into a grid. 2
 - doing semantic computations over the grid.



sequence to the action sequence

RNN encoder $(a^{(1)}, \dots, a^{(T)})$ $(E^{(1)}, \dots, E^{(T)})$ + softmax layer action sequence token embeddings $a^{(t)} = (a_{TLU}^{(t)}, a_{NLP}^{(t)}, a_{NOP}^{(t)})$ $E^{(t)} \in \mathbb{R}^h$

and outputs a grid input from the zero-initialized grid $G^{(0)} \in (\mathbb{R}^h)^{H \times W}$ via differentiable nested list evolution.



- Depending on tasks, we choose the grid decoder that can process the grid, e.g., ResNet, TextCNN.
- Our module and the grid decoder can **be jointly trained** in an end-to-end fashion via a backpropagation.
- Here, **no supervision for the alignment is required.**

Applications

Arithmetic and Algorithmic Problems

Number sequence prediction problem (Sequence)

Input 7008 -205 4 7221. Target | 14233.

Algebraic word problem (Add-or-sub)

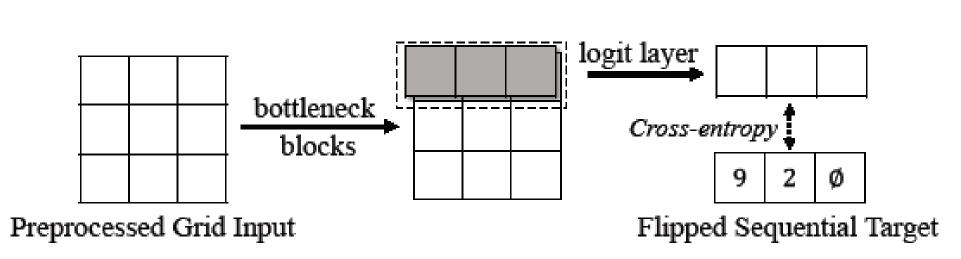
Input	Sum -3240245475 and 11.	
Target	368.	

Computer program evaluation problem (Program)

Input	j=891
	for x in range(11):j-=878
	print((368 if 821<874 else j)).
Target	

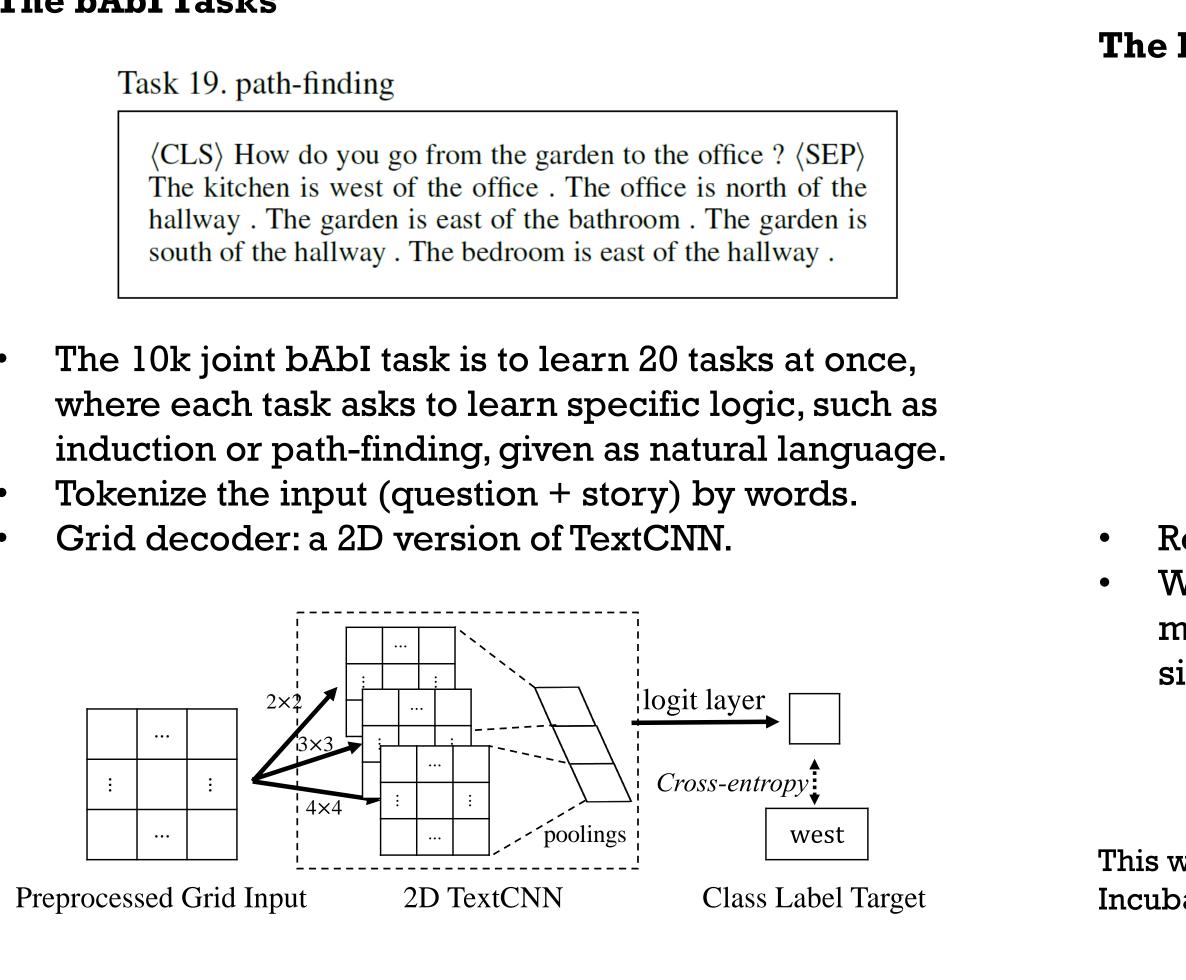
The above problems ask to answer digit numbers. We train and test models on each task separately. The ID test set follows the training distribution. The OOD test set has examples containing unseen long-digit numbers.

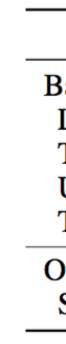
Tokenize the example by characters and decimal digits. Grid decoder: bottleneck blocks of ResNet.



To flip predictions in inference, the cross-entropy loss for the paddings must be considered during training.

The bAbI Tasks





SEOUL NATIONAL UNIVERSITY

UNIVERSITY OF ILLINOIS

Results

Arithmetic and Algorithmic Problems

	Sequence		Add-	or-sub	Pro	gram
	ID	OOD	ID	OOD	ID	OOD
Baselines						
LSTM	0.21	0.00	0.99	0.00	0.25	0.07
LSTM-Atten	0.68	0.00	1.00	0.00	0.37	0.01
RMC	0.01	0.00	0.99	0.00	0.33	0.01
Transformer	0.97	0.00	0.97	0.00	0.37	0.00
UT	1.00	0.00	1.00	0.00	0.62	0.00
Ours						
S2G-CNN	0.96	0.99	0.98	0.53	0.51	0.33
S2G-ACNN	0.90	0.92	0.96	0.55	0.44	0.35

Report the best sequence-level accuracy. In the number sequence prediction problem, our module aligns numbers by digit scales:

	5	2	0	8	2	0	0	5	-
	7	5	0	3	Θ	7	8	2	-
đ.	5	2	5	4	4	4	6	1	-

In the computer program evaluation problem, our model successfully extends rules of IF-ELSE instructions on OOD examples:

	instruction	ID	OOD
	IF-ELSE	0.46	0.26
LSTM-Atten	FOR	0.06	0.03
	*	0.07	0.04
	IF-ELSE	0.81	0.01
UT	FOR	0.38	0.00
	*	0.52	0.00
	IF-ELSE	0.73	0.57
S2G-CNN	FOR	0.20	0.09
	*	0.25	0.14

The bAbI Tasks

	#params	Error	#Failed tasks
Baselines ⁵			
LSTM	25.6M	24.9 ± 5.8	12.1 ± 3.7
Transformer	0.5M	33.1 ± 1.7	18.9 ± 0.3
UT	0.5M	26.8 ± 6.0	15.0 ± 4.0
TextCNN	0.2M	37.8 ± 0.4	19.0 ± 0.0
Durs			
S2G-TextCNN	0.8M	10.8 ± 0.8	6.0 ± 0.0

Report errors and #Failed tasks (>5% error). Without a complex and expensive memory, our module can compress long inputs into the fixedsize grid.