

Problem

Asking Clarification Questions to Handle Ambiguity in Open-Domain QA

NAVER

Dongryeol Lee^{1*}, Segwang Kim^{2*}, Minwoo Lee¹, Hwanhee Lee³, Joonsuk Park^{4,5,6}, Sang-Woo Lee^{4,5,7}, Kyomin Jung¹

¹ Dept. of ECE, Seoul National University, ² Samsung Electronic Mobile eXperience, ³ Chung-Ang University, ⁴ NAVER AI Lab, ⁵ NAVER Cloud, ⁶ University of Richmond, ⁷ KAIST AI

Contributions

- (a) We propose to use Clarification Questions (CQs) as a practical means to handle Ambiguous Questions (AQs) in Open-Domain Question Answering (ODQA).
- (b) We present CAMBIGNQ, a dataset to support CQ-based handling of AQs in ODQA.
- (c) We define a pipeline of tasks and appropriate evaluation metrics for CQ.

Method

Ambiguity arises in Open-Domain Question Answering (ODQA) when there exist multiple plausible answers for the given Ambiguous Question (AQ).

- (a) Previous works proposed **Disambiguated Questions** (DQs), the minimally edited modification of AQ. They enlist all DQs and corresponding answer.
- (b) Instead, we propose Clarification Questions (CQs), where the user's response will help identify the interpretation that best aligns with the user's intention.

Our proposed method to handle AQs to in ODQA by asking CQs consists of three subtasks: (1) Ambiguity Detection, (2) Clarification Questions generation, and (3) Clarification-based QA.

(1) Ambiguity Detection

- Given a question q and relevant passages we classify whether q is ambiguous or not (binary classification)
- We test two settings: Direct Classification (**BERT**) and Generation-based Classification (BART).

(2) Clarification Questions Generation

Given an AQ and relevant passages, we generate a CQ with following formats:

"Which version: young in series 2, child in series 6, or teenager in series 6?"

Dataset: CAMBIGNQ

Split	CQ		Category	Options		
	#	Len.	Len.	Avg. #	Len.	
Train	4,699	13.6	2.8	2.9	3.3	
Validation	461	15.9	2.5	3.3	3.8	
Test	493	17.8	2.8	3.4	4.1	

We collect high-quality of CQs by leveraging InstructGPT few-shot learning: Generation via InstructGPT and Manual Inspection and Revision.

Results

[category] $[option_1]$ $[option_2]$ [option₃]

- "*version*" is a [*category*] to which all options belong. \bullet
- each [*option_i*] represent single interpretation of AQ.

(3) Clarification-based QA

Given an AQ, relevant passages, and a CQ, we generate a unique answer for every $[option_i]$ by calling a QA model on AQ revised by CQ with following format:

"Who played young Tom Riddle in Harry Potter. Which version: child in series 6?

Human Preference Test (CQ vs DQ)

- Our proposed method CQ (59%) is preferred over DQ (33%).
- The prominent reasons for choice was its conciseness, ease of use, and clear guidance.

CQ	Split	DQ	

Clarification Questions Generation

Evaluating generated CQs against gold CQs using automatic metrics (BLEU, BERTSCORE, EM) can not capture semantic similarity.

	CQ		Category		Options			
Input in addition to AQ and RPs	BLEU-4	BERTSCORE	EM	BLEU-1	Pre.	Rec.	F1	Avg. #
No Answers for AO	7.9	88.9	20.2	47.3	37.4	18.2	24.5	2.0

Ambiguity Detection Evaluation

- Direct Classification (No Answers for AQ) shows higher F1 compared to Generation based Classification (Predicted Answers for AQ)
- This is because the average # of BART-generated answer is 1.24, resulting in low recall.

Input in addition to AQ	Acc.	Pre.	Rec.	F 1
No Answers for AQ	63.9	61.9	60.7	61.3
Predicted Answers for AQ	56.5	59.7	24.1	34.3

7.9 88.9 22.8 Predicted Answers for AQ 44.0 36.9 19.0 25.1 2.03.7 Ground Truth Answers for AQ 25.2 15.4 89.6 46.9 34.3 34.4 34.3

Clarification-based QA

The result shows **insufficient performance** across different settings. This is because the QA models, including LLMs, produce "Same Answer" for the different **questions**. Even though the QA model is prompted with Ground Truth CQ (Ideal

case), the model fails to capture subtle difference in the input.

CQ used to clarify the AQ		NQ-pretrained BART				CQ-finetuned BART			
		Rec.	F1	# Ans.	Pre.	Rec.	F1	# Ans.	
CQ generated with No Answers for AQ	47.9	25.2	33.0	1.5	54.4	31.1	39.6	1.6	
CQ generated with Predicted Answers for AQ		26.2	34.3	1.5	55.4	32.0	40.5	1.6	
CQ generated with Ground Truth Answers for AQ	39.7	37.5	38.6	2.0	47.5	49.5	48.5	2.5	
Ground Truth CQ	47.5	39.8	43.3	2.0	58.0	53.8	55.8	2.5	

Code available at: https://github.com/DongryeolLee96/AskCQ