NUMBER SEQUENCE PREDICTION PROBLEMS FOR EVALUATING COMPUTATIONAL POWERS OF NEURAL NETWORKS

Hyoungwook Nam
hwnam831@snu.ac.kr

Segwang Kim
ksk5693@snu.ac.kr

Kyomin Jung
kjung@snu.ac.kr

CONTENTS

Introduction

Number-level Sequence Prediction
Digit-level Sequence Prediction
Experiments
Conclusion

MOTIVATION
 Can neural networks learn Fibonacci sequence?

A question anybody can ask but nobody had answered
Quick test results: CNNs find it easy, but RNNs find it hard
The study is about why this observation happens
Basic idea: view CNNs as combinatorial logic and RNNs as sequential state automata

TWO TYPES OF THE PROBLEMS

Number-level (CNN)

COMPUTATIONAL POWERS

\rightarrow Digit-level Fibonacci prediction

\rightarrow Number-level Fibonacci prediction

CONTENTS

Introduction

Number-level Sequence Prediction

Digit-level Sequence Prediction
Experiments
Conclusion

NUMBER-LEVEL DATA LAYOUT

2-dimensional grid of digits

NUMBER-LEVEL SEQUENCES

Order-k linear homogeneous recurrence

- Order-2 relations: $A_{n+2}=p A_{n+1}+q A_{n}$
- Fibonacci: $(p, q)=(1,1) /$ Arithmetic: $(p, q)=(2,-1)$
- Order-3 relations: $A_{n+3}=p A_{n+2}+q A_{n+1}+r A_{n}$
- Progression: $(p, q, r)=(3,-3,1) / J u m p i n g ~ F i b o n a c c i: ~(p, q, r)=(1,0,1)$
- Number-level prediction is learning a combinatorial function of $\left(A_{n-k}, \ldots A_{n}\right) \rightarrow A_{n+1}$

DIFFICULTY AND COMPLEXITY

The number of logical gates and the depth of the circuit

Order-2 relation
Width $=\theta\left(b^{2}\right)$
Depth $=1$

Order-3 relation

$$
\begin{gathered}
\text { Width }=\theta\left(b^{3}\right) \\
\text { Depth }=1
\end{gathered}
$$

Order-3 relation Width $=\theta\left(b^{2}\right)$

$$
\text { Depth }=2
$$

CONTENTS

Introduction
Number-level Sequence Prediction

Digit-level Sequence Prediction

Experiments

Conclusion

DIGIT-LEVEL DATA LAYOUT

Sequence of digits

$$
\begin{array}{llllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} \\
& \square & \square & \square & 2 & 1 & \square & 1
\end{array} \square \square \square \square \square \text { Single-digit data per a time step }
$$

- Little-endian order (smaller digits first)
- Input: n digits $a_{1 \ldots n}$ followed by s blanks

$$
\begin{array}{llll}
a_{9} & a_{10} & a_{11} & a_{12}
\end{array}
$$

- Target: n blanks followed by $a_{n \ldots n+s}$

DIGIT-LEVEL SEQUENCES
 Their complexities correspond to sequential state machines

- Counting sequences: Finite automata
- $A_{n+1}=A_{n}+c($ fixed $c)$
- Palindromes: Pushdown automata
- Finite length palindromes are solvable by finite automata
- Training with length 1~12 / Validation with length 16
- Fibonacci/Arithmetic/Geometric: Queue automata
- Cannot be solved by stack calculator in this setup
- Queue automata are equivalent to Turing machines

CONTENTS

Introduction
Number-level Sequence Prediction
Digit-level Sequence Prediction

Experiments

Conclusion

NUMBER-LEVEL CNN MODEL

- Residual CNNs with dilated convolutions
- 12 (1 block) / 21 (2 blocks) / 30 (3 blocks) layer configurations
- 64 / 128 / 192 internal channels
- Input and output have same dimensions

NUMBER-LEVEL RESULTS

Deep / Shallow \& Wide / Deeper \& narrow

$$
A_{n}=2 A_{n-1}-A_{n-2}+A_{n-3}
$$

$(p, q) \in\{(1,1),(2,-1),(3,-2),(1,2)\}$

$A_{n}=4 A_{n-1}-6 A_{n-2}+4 A_{n-3}-A_{n-4}$

Depth of a problem is a better indicator for the complexity
CNNs tend to learn deep but narrow rules
Could not solve 3+ deep problems

DIGIT-LEVEL MODELS

Recurrent Module: LSTM, GRU, Stack-RNN, or Neural Turing Machine
Encoder-decoder model with Attention

DIGIT-LEVEL RESULTS

Tasks	Reverse-order (training)	Geometric	Arithmetic	Fibonacci
LSTM	$28.4 \%(1.2 \%)$	79.4%	77.1%	80.5%
GRU	$51.9 \%(0.9 \%)$	69.0%	77.1%	79.3%
Attention(unidirectional)	$42.0 \%(8.8 \%)$	62.8%	77.0%	69.3%
Attention(bidirectional)	$0.0 \%(0.0 \%)$	51.0%	72.9%	60.9%
Stack-RNN	$\mathbf{0 . 0 \%}(0.0 \%)$	64.1%	63.8%	69.4%
NTM	$\mathbf{0 . 0 \%}(0.0 \%)$	57.1%	65.7%	68.1%

Palindrome training errors suggest that all of them can simulate finite automata
Memory-augmented models could simulate up to pushdown automata
None of them could solve problems with complexity of queue automata

CONTENTS

Introduction

Number-level Sequence Prediction
Digit-level Sequence Prediction
Experiments
Conclusion

CONTRIBUTIONS

- Suggested an algorithmic task suite for machine learning
- Well-defined and possible to generate arbitrary number of examples
- Defined the complexities of the sequence generation rules
- Effective ways to predict the difficulties of the problems
- Showed that computational powers of current deep learning models are limited
- Even complex memory augmented models are not Turing-capable yet

DISCUSSIONS \& FUTURE WORKS
 Possible ways to overcome the computational limits

- Architecture-level
- Turing-capable memory architectures
- CNN achitecture for deeper combinatorial logic
- Training-level
- Decouple number of inputs and computation steps
- Reinforcement learning, Incremental training with transfer learning, etc.

THANK YOU

Hyoungwook Nam
hwnam831@snu.ac.kr

Segwang Kim
ksk5693@snu.ac.kr

Kyomin Jung
kjung@snu.ac.kr

