
Neural Sequence-to-grid Module for Learning
Symbolic Rules

Segwang Kim1, Hyoungwook Nam2, Joonyoung Kim1, Kyomin Jung1

1 Seoul National University, Seoul, Korea
2 University of Illinois at Urbana-Champaign, Urbana, Illinois, USA



Background

¡ Symbolic reasoning problems are testbeds for assessing logical 
inference abilities of deep learning models.
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Background

¡ Symbolic reasoning problems are testbeds for assessing logical 
inference abilities of deep learning models.

¡ The determinism of symbolic problems allows us to systematically 
test deep learning models with out-of-distribution (OOD) data.

¡ Humans with algebraic mind can naturally extend learned rules.
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[1] Zaremba, et al. Learning to execute. arXiv 2014.
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Background

¡ However, deep learning models cannot extend learned rules to 
OOD (out-of-distribution) examples.

4/36[3] Nam, et al. Number sequence prediction problems and computational power of neural networks, AAAI 2019
[4] Saxton, et al. Analysing Mathmatical Reasoning Abilities of Neural Models, ICLR 2019.

Number sequence prediction problems [3]

Middle school level mathematics problems [4]
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Motivation

¡ Idea: if we align an input sequence into a grid, learning 
symbolic rules becomes easier.
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¡ Idea: if we align an input sequence into a grid, learning 
symbolic rules becomes easier.

¡ Consider a toy decimal addition problems in two different setups:
¡ Sequential setup

¡ Grid setup
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Grid TargetGrid Input

The convolution kernel can learn the addition rule, 
i.e., inductive bias.
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Transformer

CNN



____________________________

Sequential 
Setup

Grid
Setup

Usefulness of Aligned Grid Inputs

¡ Depending on setups, OOD generalization is achieved or not.

¡ Providing aligned grid inputs for CNN can be key to extend      
symbolic rules. 
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Motivation

¡ However, most of symbolic problems cannot be formulated in such 
grid setup.
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¡ How to align programming 
instructions?

¡ How to align words?



Research Goal

¡ Therefore, we need a new input preprocessing module. 

¡ The module must automatically align an sequence into a grid
without supervision for the alignment.
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Input Preprocessing 
Module



Our Method

¡ We propose a neural sequence-to-grid (seq2grid) module.
¡ an input preprocessor.
¡ It learns how to segment and align an input sequence into a grid. 

¡ The preprocessing is done via our novel differentiable mapping.
¡ It ensures a joint training of our module and the neural network in an    

end-to-end fashion via a backpropagation.
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Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.
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Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.
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Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.
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Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.
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¡ The sequence-to-grid module does following:
¡ 1. Encodes input sequence to the action sequence.

Method: Neural Sequence-to-grid Module
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+ softmax layer



¡ The sequence-to-grid module does following:
¡ 1. Encodes input sequence to the action sequence.

¡ 2. Outputs a grid input from the zero-initialized grid !(#) via nest list 
evolutions.

Method: Neural Sequence-to-grid Module
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Method: Nest List Evolution
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¡ Each component of an action !(#) = (!&'(# , !*'+# , !*,+# ) is the           
probability of performing one of three nested list operations:

Method: Nest List Evolution
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¡ Each component of an action !(#) = (!&'(# , !*'+# , !*,+# ) is the           
probability of performing one of three nested list operations:

¡ In each evolution step, -(#./) with 0 # , ! # grows to -(#)

Method: Nest List Evolution
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Arithmetic and Algorithmic Problems

¡ We test our module on three arithmetic and algorithmic problems. 

¡ 1M training examples.

¡ Tokenize all examples by characters and decimal digits.
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Arithmetic and Algorithmic Problems

¡ We test our module on three arithmetic and algorithmic problems. 

¡ 1M training examples.

¡ Tokenize all examples by characters and decimal digits.

¡ Two test sets (10k test examples each).
¡ In-distribution (ID): examples sampled from the training distribution.

¡ Out-of-distribution (OOD): examples with unprecedented longer digits. 
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Arithmetic and Algorithmic Problems

¡ Grid decoder: three stacks of 3-layered bottleneck blocks of ResNet.
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Arithmetic and Algorithmic Problems

¡ Grid decoder: three stacks of 3-layered bottleneck blocks of ResNet.

¡ The seq2grid module and the grid decoder are simultaneously
trained by reducing cross-entropy loss.
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Results: Arithmetic and Algorithmic Problems

¡ On OOD test set, our models outperform baselines by large margin.

¡ In number sequence prediction problem, our module automatically 
aligns numbers by digit scales.
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Results: Arithmetic and Algorithmic Problems

¡ In computer program evaluation problem, 
¡ We investigate accuracy by instructions.
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Results: Arithmetic and Algorithmic Problems

¡ In computer program evaluation problem, 
¡ We investigate accuracy by instructions.
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Accuracy over snippets containing * instructions

OOD snippet examples



Results: Arithmetic and Algorithmic Problems
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¡ In computer program evaluation problem, 
¡ We investigate accuracy by instructions.

¡ 57% accuracy in snippets containing if-else is surprising.

OOD snippet examples



Results: Arithmetic and Algorithmic Problems

¡ In computer program evaluation problem, 
¡ We investigate accuracy by instructions.

¡ 57% accuracy in snippets containing if-else is surprising.
¡ Since those snippets can contain other instructions as well.
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OOD snippet examples



bAbI QA Tasks

¡ We further test our module on bAbI QA tasks.

¡ Training models on all tasks at once (10k joint tasks).

¡ Tokenize the input (question + story) by words.

¡ Grid decoder: a 2D version of TextCNN.
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instruction ID OOD

LSTM-Atten
IF-ELSE 0.46 0.26

FOR 0.06 0.03
* 0.07 0.04

UT
IF-ELSE 0.81 0.01

FOR 0.38 0.00
* 0.52 0.00

S2G-ACNN
IF-ELSE 0.80 0.69

FOR 0.14 0.12
* 0.28 0.15

Table 2: Accuracy by instruction types of the best runs on the
computer program evaluation problems. Each test set is split
into three by the instructions used (for, multiply, if-else).

print((11*9223698))

print((12*(6707143 if 2025491>9853525 else
6816666)))

b=8582286
for x in range(20):b-=8256733
print(b)

d=(1017291 if 7117986>9036040 else 5725637)
for x in range(2):d-=6827279
print(d)

Figure 7: Some OOD code snippet examples correctly pre-
dicted by the best run of the S2G-ACNN. Note that FOR or
* instruction requiring non-linear time complexity.

ID test set. This shows that extending learned rules to longer
numbers is extremely difficult via sequential processing.

As for the number sequence prediction problems, their
OOD test results serve as unit tests for the seq2grid module
since it needs to align digit symbols on the grid according
to their scales. Indeed, Figure 6a shows that our module au-
tomatically finds such alignments which are similar to the
manually designed grid of digits as shown in Figure 1.

As for the algebraic word problems, they require context-
dependent arithmetic unlike the fixed progression rules in
number sequence prediction problems. In particular, linguis-
tic instructions like add or take away indicates how to
add/subtract given two numbers in a specific order. Since our
grid decoders apply the fixed convolutional filters over the
grid, linguistic instructions must be reflected in the grid in-
put beforehand for executing various arithmetic. This shows
that our seq2grid module can infuse the instruction informa-
tion to the grid input.

As for the computer program evaluation problems, pre-
dicting the output of a code snippet demands an understand-
ing of algorithmic rules like branching mechanisms or for-
loop given as programming instructions IF-ELSE or FOR.
Also, computing * operations has non-linear time complex-
ity, unlike addition or subtraction. Hence, we further inves-
tigate accuracy on snippets by those instructions as shown
in Table 2. For the OOD snippets containing IF-ELSE in-

Task 2. two-supporting-facts

hCLSi Where is the apple ? hSEPi Mary journeyed to the gar-
den . Sandra got the football there . Mary picked up the apple
there . Mary dropped the apple .

Task 17. basic-deduction

hCLSi What is gertrude afraid of ? hSEPi Wolves are afraid
of sheep . Gertrude is a wolf . Winona is a wolf . Sheep are
afraid of mice . Mice are afraid of cats . Cats are afraid of
sheep . Emily is a cat . Jessica is a wolf .

Task 19. path-finding

hCLSi How do you go from the garden to the office ? hSEPi
The kitchen is west of the office . The office is north of the
hallway . The garden is east of the bathroom . The garden is
south of the hallway . The bedroom is east of the hallway .

Figure 8: Input examples of the bAbI QA tasks.

structions, our S2G-ACNN achieves almost 70% accuracy,
implying that it does not randomly pick one branch between
two possible branches. For the non-linear operations, the
S2G-ACNN shows little understanding compared with the
UT on the ID test set. However, the UT fails to extend rules
of FOR and * instructions on the OOD test set while the
S2G-ACNN does so on some examples as shown in Fig-
ure 7. These are surprising in that both the seq2grid module
and the ACNN grid decoder do linear time computations in
the input length.

bAbI QA Tasks
Given as natural language with the small number of vocab-
ulary about 170, the bAbI QA tasks (Weston et al. 2015)
test 20 types of simple reasoning abilities such as counting,
induction, deduction, and path-finding. A problem instance
consists of a story, a question, and the answer. Here, the
story contains supporting sentences about the answer and
distractors which are irrelevant sentences to the answer. We
formulate the bAbI QA tasks (Weston et al. 2015) in se-
quence classification setup such that an input is a concate-
nation of hCLSi token, a question, hSEPi token, and a story
as shown in Figure 8. While previous work (Dehghani et al.
2018) uses sentence-wise encodings, we use straightforward
one-hot word encodings, yielding the increase of the aver-
age length of input sequences from 13.6 to 78.9. Solving the
bAbI tasks under word-level encodings instead of sentence-
level makes it much harder since it requires to handle much
longer dependencies. State-of-the-art models deal with this
issue via augmenting neural networks with external mem-
ory (Munkhdalai et al. 2019; Rae et al. 2016). However, we
show that the seq2grid module can enhance a simple neural
network like TextCNN to effectively solve the word-level
bAbI tasks, even in the absence of complex and expensive
external memory structures.
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structions, our S2G-ACNN achieves almost 70% accuracy,
implying that it does not randomly pick one branch between
two possible branches. For the non-linear operations, the
S2G-ACNN shows little understanding compared with the
UT on the ID test set. However, the UT fails to extend rules
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S2G-ACNN does so on some examples as shown in Fig-
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ulary about 170, the bAbI QA tasks (Weston et al. 2015)
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consists of a story, a question, and the answer. Here, the
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distractors which are irrelevant sentences to the answer. We
formulate the bAbI QA tasks (Weston et al. 2015) in se-
quence classification setup such that an input is a concate-
nation of hCLSi token, a question, hSEPi token, and a story
as shown in Figure 8. While previous work (Dehghani et al.
2018) uses sentence-wise encodings, we use straightforward
one-hot word encodings, yielding the increase of the aver-
age length of input sequences from 13.6 to 78.9. Solving the
bAbI tasks under word-level encodings instead of sentence-
level makes it much harder since it requires to handle much
longer dependencies. State-of-the-art models deal with this
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Results: bAbI QA Tasks

¡ Our sequence-to-grid method makes bAbI tasks easier.

¡ TextCNN fail at almost all tasks.
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Results: bAbI QA Tasks

¡ Our sequence-to-grid method makes bAbI tasks easier.

¡ TextCNN fail at almost all tasks. 

¡ Our module can compress long inputs into grid inputs.
¡ 79 (average # of input tokens ) > 32 (# of the grid slots)

¡ Only necessary words along story arcs are selected.

¡ Our model does not need a complex and expensive memory.
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Closing Remarks

¡ Our seq2grid module:
- Input preprocessor.
- It automatically aligns an sequential input into a grid.

- During training, it requires no supervision for the alignment.
- Its nest list operations ensure the joint training of the module and the 

grid decoder.

- It enhances neural networks in various symbolic reasoning tasks.

¡ Code: https://github.com/segwangkim/neural-seq2grid-module

¡ Contact: ksk5693@snu.ac.kr
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