
Neural Sequence-to-grid Module for Learning
Symbolic Rules

Segwang Kim1, Hyoungwook Nam2, Joonyoung Kim1, Kyomin Jung1

1 Seoul National University, Seoul, Korea
2 University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Background

¡ Symbolic reasoning problems are testbeds for assessing logical
inference abilities of deep learning models.

2/36

Program code evaluation [1] bAbI tasks [2]

[1] Zaremba, et al. Learning to execute. arXiv 2014.
[2] Weston, et al. Towards ai-complete question answering: A set of prerequisite toy tasks. ICLR 2016.

Background

¡ Symbolic reasoning problems are testbeds for assessing logical
inference abilities of deep learning models.

¡ The determinism of symbolic problems allows us to systematically
test deep learning models with out-of-distribution (OOD) data.

¡ Humans with algebraic mind can naturally extend learned rules.

3/36

5 8 2 + 1 = 3 0 5 3 4 + 4 2 1 =

[1] Zaremba, et al. Learning to execute. arXiv 2014.
[2] Weston, et al. Towards ai-complete question answering: A set of prerequisite toy tasks. ICLR 2016.

Program code evaluation [1] bAbI tasks [2]

6 7 + 3 = 6 9 5 2 1 + 5 0 0 2 9 =

Training examples OOD Test Examples

Background

¡ However, deep learning models cannot extend learned rules to
OOD (out-of-distribution) examples.

4/36[3] Nam, et al. Number sequence prediction problems and computational power of neural networks, AAAI 2019
[4] Saxton, et al. Analysing Mathmatical Reasoning Abilities of Neural Models, ICLR 2019.

Number sequence prediction problems [3]

Middle school level mathematics problems [4]

Error

Accuracy

Motivation

¡ Idea: if we align an input sequence into a grid, learning
symbolic rules becomes easier.

5/36

Motivation

¡ Idea: if we align an input sequence into a grid, learning
symbolic rules becomes easier.

¡ Consider a toy decimal addition problems in two different setups:
¡ Sequential setup

6/36

5 8 2 2 + 1 3 . 5 8 3 5 .
Sequential Input Sequential Target

RNN seq2seq,

Transformer

Motivation

¡ Idea: if we align an input sequence into a grid, learning
symbolic rules becomes easier.

¡ Consider a toy decimal addition problems in two different setups:
¡ Sequential setup

¡ Grid setup

7/36

5 8 2 2 +
1 3 .

5 8 2 2 + 1 3 . 5 8 3 5 .
Sequential Input Sequential Target

Grid Input

RNN seq2seq,

Transformer

Align inputs by digit scales

Motivation

¡ Idea: if we align an input sequence into a grid, learning
symbolic rules becomes easier.

¡ Consider a toy decimal addition problems in two different setups:
¡ Sequential setup

¡ Grid setup

8/36

5 8 2 2 +
1 3 .

5 8 2 2 + 1 3 . 5 8 3 5 .

5 8 3 5 .

Sequential Input Sequential Target

Grid TargetGrid Input

RNN seq2seq,

Transformer

CNN

Motivation

¡ Idea: if we align an input sequence into a grid, learning
symbolic rules becomes easier.

¡ Consider a toy decimal addition problems in two different setups:
¡ Sequential setup

¡ Grid setup

9/36

5 8 2 2 +
1 3 .

5 8 2 2 + 1 3 . 5 8 3 5 .

5 8 3 5 .

Sequential Input Sequential Target

Grid TargetGrid Input

The convolution kernel can learn the addition rule,
i.e., inductive bias.

RNN seq2seq,

Transformer

CNN

Sequential
Setup

Grid
Setup

Usefulness of Aligned Grid Inputs

¡ Depending on setups, OOD generalization is achieved or not.

¡ Providing aligned grid inputs for CNN can be key to extend
symbolic rules.

10/36

Motivation

¡ However, most of symbolic problems cannot be formulated in such
grid setup.

11/36

¡ How to align programming
instructions?

¡ How to align words?

Research Goal

¡ Therefore, we need a new input preprocessing module.

¡ The module must automatically align an sequence into a grid
without supervision for the alignment.

12/36

Input Preprocessing
Module

Our Method

¡ We propose a neural sequence-to-grid (seq2grid) module.
¡ an input preprocessor.
¡ It learns how to segment and align an input sequence into a grid.

¡ The preprocessing is done via our novel differentiable mapping.
¡ It ensures a joint training of our module and the neural network in an

end-to-end fashion via a backpropagation.

13/36

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.

14/36

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.

15/36

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

1. aligning an input sequence into a grid
automatically

Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.

16/36

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

2. semantic computations over the grid.

Any neural network that can get the grid is possible
e.g., ResNet, TextCNN,

1. aligning an input sequence into a grid
automatically

Method: Sequence-input grid-output Architecture

¡ First, we propose the sequence-input grid-output architecture.

17/36

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output
Any neural network that can get the grid is possible
e.g., ResNet, TextCNN,

2. semantic computations over the grid.

1. aligning an input sequence into a grid
automatically

¡ The sequence-to-grid module does following:
¡ 1. Encodes input sequence to the action sequence.

Method: Neural Sequence-to-grid Module

18/36

Input sequence

!(#) !(%) … !(') ((#) (()) … ((*)
Action sequence

!(+) ∈ ℝ.: token embedding ((+) ∈ ℝ/: action

RNN encoder

+ softmax layer

¡ The sequence-to-grid module does following:
¡ 1. Encodes input sequence to the action sequence.

¡ 2. Outputs a grid input from the zero-initialized grid !(#) via nest list
evolutions.

Method: Neural Sequence-to-grid Module

19/36

Input sequence

%(&) %(') … %())

Grid Input

*(&) *(+) … *(,)
Action sequence

%(-) ∈ ℝ0: token embedding *(-) ∈ ℝ1: action

RNN encoder

+ softmax layer

!(#) !(-) ∈ (ℝ0)2 ×4!(5) !(') !())

…

(%(&), *(&)) (%(+), *(+))

Grid of the size 7-by-8

¡ The sequence-to-grid module does following:
¡ 1. Encodes input sequence to the action sequence.

¡ 2. Outputs a grid input from the zero-initialized grid !(#) via nest list
evolutions.

Method: Neural Sequence-to-grid Module

20/36

Input sequence

%(&) %(') … %())

Grid Input

*(&) *(+) … *(,)
Action sequence

%(-) ∈ ℝ0: token embedding *(-) ∈ ℝ1: action

RNN encoder

+ softmax layer

!(#) !(-) ∈ (ℝ0)2 ×4!(5) !(') !())

…

(%(&), *(&)) (%(+), *(+))

Grid of the size 7-by-8

Method: Nest List Evolution

21/36

7 6
5 4 3 2
1

8

7 6
5 4 3 2
1

8 7 6
5 4 3 2
1

8
7 6
5 4 3 2
1

)*+,
(.) ×

)1+2
(.) ×

)132
(.) ×

4(.)

5(.67)

89:(.)

;9<(.)

5(.67)

= 5(.)+

¡ Top-list-update (TLU)

¡ New-list-push (NLP)

¡ No-op (NOP)

nested list operationsCandidates

¡ Each component of an action !(#) = (!&'(# , !*'+# , !*,+#) is the
probability of performing one of three nested list operations:

Method: Nest List Evolution

22/36

7 6
5 4 3 2
1

8

7 6
5 4 3 2
1

8 7 6
5 4 3 2
1

8
7 6
5 4 3 2
1

)*+,
(.) ×

)1+2
(.) ×

)132
(.) ×

4(.)

5(.67)

89:(.)

;9<(.)

5(.67)

= 5(.)+

¡ Top-list-update (TLU)

¡ New-list-push (NLP)

¡ No-op (NOP)

¡ Each component of an action !(#) = (!&'(# , !*'+# , !*,+#) is the
probability of performing one of three nested list operations:

¡ In each evolution step, -(#./) with 0 # , ! # grows to -(#)

Method: Nest List Evolution

23/36

7 6
5 4 3 2
1

8

7 6
5 4 3 2
1

8 7 6
5 4 3 2
1

8
7 6
5 4 3 2
1

)*+,
(.) ×

)1+2
(.) ×

)132
(.) ×

4(.)

5(.67)

89:(.)

;9<(.)

5(.67)

= 5(.)+

-(#) = !&'(# ⋅ 234 # + !*'+# ⋅ 234 # + !*,+# ⋅ - #./

¡ Top-list-update (TLU)

¡ New-list-push (NLP)

¡ No-op (NOP)

Arithmetic and Algorithmic Problems

¡ We test our module on three arithmetic and algorithmic problems.

¡ 1M training examples.

¡ Tokenize all examples by characters and decimal digits.

24/36

Number sequence prediction problem

Computer program evaluation problem

Algebraic word problem

Input
Target

7008 -205 4 7221.
14233.

Input

Target

j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
368.

Input
Target

Sum -3240245475 and 11.
368.

Number sequence prediction problem

Computer program evaluation problem

Algebraic word problem

Input
Target

7008 -205 4 7221.
14233.

Input

Target

j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
368.

Input
Target

Sum -3240245475 and 11.
368.

Number sequence prediction problem

Computer program evaluation problem

Algebraic word problem

Input
Target

7008 -205 4 7221.
14233.

Input

Target

j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
368.

Input
Target

Sum -3240245475 and 11.
368.

Arithmetic and Algorithmic Problems

¡ We test our module on three arithmetic and algorithmic problems.

¡ 1M training examples.

¡ Tokenize all examples by characters and decimal digits.

¡ Two test sets (10k test examples each).
¡ In-distribution (ID): examples sampled from the training distribution.

¡ Out-of-distribution (OOD): examples with unprecedented longer digits.
25/36

Number sequence prediction problem

Computer program evaluation problem

Algebraic word problem

Input
Target

7008 -205 4 7221.
14233.

Input

Target

j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
368.

Input
Target

Sum -3240245475 and 11.
368.

Number sequence prediction problem

Computer program evaluation problem

Algebraic word problem

Input
Target

7008 -205 4 7221.
14233.

Input

Target

j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
368.

Input
Target

Sum -3240245475 and 11.
368.

Number sequence prediction problem

Computer program evaluation problem

Algebraic word problem

Input
Target

7008 -205 4 7221.
14233.

Input

Target

j=891
for x in range(11):j-=878
print((368 if 821<874 else j)).
368.

Input
Target

Sum -3240245475 and 11.
368.

Arithmetic and Algorithmic Problems

¡ Grid decoder: three stacks of 3-layered bottleneck blocks of ResNet.

26/36
[5] He, et al. Deep Residual Learning for Image Recognition, CVPR 2015

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

3-layered bottleneck blocks [5]

×3
size: 3×25

Arithmetic and Algorithmic Problems

¡ Grid decoder: three stacks of 3-layered bottleneck blocks of ResNet.

¡ The seq2grid module and the grid decoder are simultaneously
trained by reducing cross-entropy loss.

27/36
[5] He, et al. Deep Residual Learning for Image Recognition, CVPR 2015

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

3-layered bottleneck blocks [5]

×3

bottleneck
blocks

9 2 ∅
Flipped Sequential Target

Cross-entropy

logit layer

Preprocessed Grid Input

2 9

Original Target

size: 3×25

pad token

Results: Arithmetic and Algorithmic Problems

¡ On OOD test set, our models outperform baselines by large margin.

¡ In number sequence prediction problem, our module automatically
aligns numbers by digit scales.

28/36

… -16444525 -28703057 -50028025$

An Input example Visualization of the grid input

seq2grid
module

Results: Arithmetic and Algorithmic Problems

¡ In computer program evaluation problem,
¡ We investigate accuracy by instructions.

29/36

OOD snippet examples

Results: Arithmetic and Algorithmic Problems

¡ In computer program evaluation problem,
¡ We investigate accuracy by instructions.

30/36

Accuracy over snippets containing * instructions

OOD snippet examples

Results: Arithmetic and Algorithmic Problems

31/36

¡ In computer program evaluation problem,
¡ We investigate accuracy by instructions.

¡ 57% accuracy in snippets containing if-else is surprising.

OOD snippet examples

Results: Arithmetic and Algorithmic Problems

¡ In computer program evaluation problem,
¡ We investigate accuracy by instructions.

¡ 57% accuracy in snippets containing if-else is surprising.
¡ Since those snippets can contain other instructions as well.

32/36

OOD snippet examples

bAbI QA Tasks

¡ We further test our module on bAbI QA tasks.

¡ Training models on all tasks at once (10k joint tasks).

¡ Tokenize the input (question + story) by words.

¡ Grid decoder: a 2D version of TextCNN.

33/36

instruction ID OOD

LSTM-Atten
IF-ELSE 0.46 0.26

FOR 0.06 0.03
* 0.07 0.04

UT
IF-ELSE 0.81 0.01

FOR 0.38 0.00
* 0.52 0.00

S2G-ACNN
IF-ELSE 0.80 0.69

FOR 0.14 0.12
* 0.28 0.15

Table 2: Accuracy by instruction types of the best runs on the
computer program evaluation problems. Each test set is split
into three by the instructions used (for, multiply, if-else).

print((11*9223698))

print((12*(6707143 if 2025491>9853525 else
6816666)))

b=8582286
for x in range(20):b-=8256733
print(b)

d=(1017291 if 7117986>9036040 else 5725637)
for x in range(2):d-=6827279
print(d)

Figure 7: Some OOD code snippet examples correctly pre-
dicted by the best run of the S2G-ACNN. Note that FOR or
* instruction requiring non-linear time complexity.

ID test set. This shows that extending learned rules to longer
numbers is extremely difficult via sequential processing.

As for the number sequence prediction problems, their
OOD test results serve as unit tests for the seq2grid module
since it needs to align digit symbols on the grid according
to their scales. Indeed, Figure 6a shows that our module au-
tomatically finds such alignments which are similar to the
manually designed grid of digits as shown in Figure 1.

As for the algebraic word problems, they require context-
dependent arithmetic unlike the fixed progression rules in
number sequence prediction problems. In particular, linguis-
tic instructions like add or take away indicates how to
add/subtract given two numbers in a specific order. Since our
grid decoders apply the fixed convolutional filters over the
grid, linguistic instructions must be reflected in the grid in-
put beforehand for executing various arithmetic. This shows
that our seq2grid module can infuse the instruction informa-
tion to the grid input.

As for the computer program evaluation problems, pre-
dicting the output of a code snippet demands an understand-
ing of algorithmic rules like branching mechanisms or for-
loop given as programming instructions IF-ELSE or FOR.
Also, computing * operations has non-linear time complex-
ity, unlike addition or subtraction. Hence, we further inves-
tigate accuracy on snippets by those instructions as shown
in Table 2. For the OOD snippets containing IF-ELSE in-

Task 2. two-supporting-facts

hCLSi Where is the apple ? hSEPi Mary journeyed to the gar-
den . Sandra got the football there . Mary picked up the apple
there . Mary dropped the apple .

Task 17. basic-deduction

hCLSi What is gertrude afraid of ? hSEPi Wolves are afraid
of sheep . Gertrude is a wolf . Winona is a wolf . Sheep are
afraid of mice . Mice are afraid of cats . Cats are afraid of
sheep . Emily is a cat . Jessica is a wolf .

Task 19. path-finding

hCLSi How do you go from the garden to the office ? hSEPi
The kitchen is west of the office . The office is north of the
hallway . The garden is east of the bathroom . The garden is
south of the hallway . The bedroom is east of the hallway .

Figure 8: Input examples of the bAbI QA tasks.

structions, our S2G-ACNN achieves almost 70% accuracy,
implying that it does not randomly pick one branch between
two possible branches. For the non-linear operations, the
S2G-ACNN shows little understanding compared with the
UT on the ID test set. However, the UT fails to extend rules
of FOR and * instructions on the OOD test set while the
S2G-ACNN does so on some examples as shown in Fig-
ure 7. These are surprising in that both the seq2grid module
and the ACNN grid decoder do linear time computations in
the input length.

bAbI QA Tasks
Given as natural language with the small number of vocab-
ulary about 170, the bAbI QA tasks (Weston et al. 2015)
test 20 types of simple reasoning abilities such as counting,
induction, deduction, and path-finding. A problem instance
consists of a story, a question, and the answer. Here, the
story contains supporting sentences about the answer and
distractors which are irrelevant sentences to the answer. We
formulate the bAbI QA tasks (Weston et al. 2015) in se-
quence classification setup such that an input is a concate-
nation of hCLSi token, a question, hSEPi token, and a story
as shown in Figure 8. While previous work (Dehghani et al.
2018) uses sentence-wise encodings, we use straightforward
one-hot word encodings, yielding the increase of the aver-
age length of input sequences from 13.6 to 78.9. Solving the
bAbI tasks under word-level encodings instead of sentence-
level makes it much harder since it requires to handle much
longer dependencies. State-of-the-art models deal with this
issue via augmenting neural networks with external mem-
ory (Munkhdalai et al. 2019; Rae et al. 2016). However, we
show that the seq2grid module can enhance a simple neural
network like TextCNN to effectively solve the word-level
bAbI tasks, even in the absence of complex and expensive
external memory structures.

∙∙∙

∙∙∙

∙∙∙
∙∙∙

Preprocessed Grid Input 2D TextCNN

west

Class Label Target

Cross-entropy

poolings

3×3

logit layer2×2

∙∙∙
∙∙∙

∙∙∙

∙∙∙
∙∙∙

∙∙∙

∙∙∙

∙∙∙
∙∙∙

∙∙∙

∙∙∙

∙∙∙

4×4

instruction ID OOD

LSTM-Atten
IF-ELSE 0.46 0.26

FOR 0.06 0.03
* 0.07 0.04

UT
IF-ELSE 0.81 0.01

FOR 0.38 0.00
* 0.52 0.00

S2G-ACNN
IF-ELSE 0.80 0.69

FOR 0.14 0.12
* 0.28 0.15

Table 2: Accuracy by instruction types of the best runs on the
computer program evaluation problems. Each test set is split
into three by the instructions used (for, multiply, if-else).

print((11*9223698))

print((12*(6707143 if 2025491>9853525 else
6816666)))

b=8582286
for x in range(20):b-=8256733
print(b)

d=(1017291 if 7117986>9036040 else 5725637)
for x in range(2):d-=6827279
print(d)

Figure 7: Some OOD code snippet examples correctly pre-
dicted by the best run of the S2G-ACNN. Note that FOR or
* instruction requiring non-linear time complexity.

ID test set. This shows that extending learned rules to longer
numbers is extremely difficult via sequential processing.

As for the number sequence prediction problems, their
OOD test results serve as unit tests for the seq2grid module
since it needs to align digit symbols on the grid according
to their scales. Indeed, Figure 6a shows that our module au-
tomatically finds such alignments which are similar to the
manually designed grid of digits as shown in Figure 1.

As for the algebraic word problems, they require context-
dependent arithmetic unlike the fixed progression rules in
number sequence prediction problems. In particular, linguis-
tic instructions like add or take away indicates how to
add/subtract given two numbers in a specific order. Since our
grid decoders apply the fixed convolutional filters over the
grid, linguistic instructions must be reflected in the grid in-
put beforehand for executing various arithmetic. This shows
that our seq2grid module can infuse the instruction informa-
tion to the grid input.

As for the computer program evaluation problems, pre-
dicting the output of a code snippet demands an understand-
ing of algorithmic rules like branching mechanisms or for-
loop given as programming instructions IF-ELSE or FOR.
Also, computing * operations has non-linear time complex-
ity, unlike addition or subtraction. Hence, we further inves-
tigate accuracy on snippets by those instructions as shown
in Table 2. For the OOD snippets containing IF-ELSE in-

Task 2. two-supporting-facts

hCLSi Where is the apple ? hSEPi Mary journeyed to the gar-
den . Sandra got the football there . Mary picked up the apple
there . Mary dropped the apple .

Task 17. basic-deduction

hCLSi What is gertrude afraid of ? hSEPi Wolves are afraid
of sheep . Gertrude is a wolf . Winona is a wolf . Sheep are
afraid of mice . Mice are afraid of cats . Cats are afraid of
sheep . Emily is a cat . Jessica is a wolf .

Task 19. path-finding

hCLSi How do you go from the garden to the office ? hSEPi
The kitchen is west of the office . The office is north of the
hallway . The garden is east of the bathroom . The garden is
south of the hallway . The bedroom is east of the hallway .

Figure 8: Input examples of the bAbI QA tasks.

structions, our S2G-ACNN achieves almost 70% accuracy,
implying that it does not randomly pick one branch between
two possible branches. For the non-linear operations, the
S2G-ACNN shows little understanding compared with the
UT on the ID test set. However, the UT fails to extend rules
of FOR and * instructions on the OOD test set while the
S2G-ACNN does so on some examples as shown in Fig-
ure 7. These are surprising in that both the seq2grid module
and the ACNN grid decoder do linear time computations in
the input length.

bAbI QA Tasks
Given as natural language with the small number of vocab-
ulary about 170, the bAbI QA tasks (Weston et al. 2015)
test 20 types of simple reasoning abilities such as counting,
induction, deduction, and path-finding. A problem instance
consists of a story, a question, and the answer. Here, the
story contains supporting sentences about the answer and
distractors which are irrelevant sentences to the answer. We
formulate the bAbI QA tasks (Weston et al. 2015) in se-
quence classification setup such that an input is a concate-
nation of hCLSi token, a question, hSEPi token, and a story
as shown in Figure 8. While previous work (Dehghani et al.
2018) uses sentence-wise encodings, we use straightforward
one-hot word encodings, yielding the increase of the aver-
age length of input sequences from 13.6 to 78.9. Solving the
bAbI tasks under word-level encodings instead of sentence-
level makes it much harder since it requires to handle much
longer dependencies. State-of-the-art models deal with this
issue via augmenting neural networks with external mem-
ory (Munkhdalai et al. 2019; Rae et al. 2016). However, we
show that the seq2grid module can enhance a simple neural
network like TextCNN to effectively solve the word-level
bAbI tasks, even in the absence of complex and expensive
external memory structures.

size: 4×8

Results: bAbI QA Tasks

¡ Our sequence-to-grid method makes bAbI tasks easier.

¡ TextCNN fail at almost all tasks.

34/36

Results: bAbI QA Tasks

¡ Our sequence-to-grid method makes bAbI tasks easier.

¡ TextCNN fail at almost all tasks.

¡ Our module can compress long inputs into grid inputs.
¡ 79 (average # of input tokens) > 32 (# of the grid slots)

¡ Only necessary words along story arcs are selected.

¡ Our model does not need a complex and expensive memory.

35/36

Closing Remarks

¡ Our seq2grid module:
- Input preprocessor.
- It automatically aligns an sequential input into a grid.

- During training, it requires no supervision for the alignment.
- Its nest list operations ensure the joint training of the module and the

grid decoder.

- It enhances neural networks in various symbolic reasoning tasks.

¡ Code: https://github.com/segwangkim/neural-seq2grid-module

¡ Contact: ksk5693@snu.ac.kr

36/36

https://github.com/segwangkim/neural-seq2grid-module
mailto:ksk5693@snu.ac.kr

